Equality with Inequality

Algebra Level 3

Let ( 1 + a + b + c ) ( 1 + 1 a + 1 b + 1 c ) = 16 \left(1+a+b+c\right)\left(1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=16 , where a , b , c R + a,b,c\in\mathbb{R^+} .

Find a + b + c = ? a+b+c=?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Titu's Lemma

( 1 + a + b + c ) ( 1 + 1 a + 1 b + 1 c ) ( 1 + a + b + c ) ( ( 1 + 1 + 1 + 1 ) 2 1 + a + b + c ) = 16 By Titu’s lemma \begin{aligned} (1+a+b+c)\color{#3D99F6}\left(1+\frac 1a+\frac 1b + \frac 1c\right) & \ge (1+a+b+c){\color{#3D99F6}\left(\frac {(1+1+1+1)^2}{1+a+b+c}\right)} = 16 & \small \color{#3D99F6} \text{By Titu's lemma} \end{aligned}

Equality occurs when a = b = c = 1 a=b=c=1 . Therefore, when ( 1 + a + b + c ) ( 1 + 1 a + 1 b + 1 c ) = 16 (1+a+b+c)\left(1+\dfrac 1a+\dfrac 1b + \dfrac 1c\right) = 16 , a + b + c = 3 a+b+c = \boxed{3} .

S P
May 31, 2018

By AM-GM inequality \color{#3D99F6}{\text{AM-GM inequality}} on ( 1 + a + b + c ) (1+a+b+c) we have:

( 1 + a + b + c ) 4 a b c 4 (1) (1+a+b+c)\ge 4 \sqrt[4]{abc} ~~-~~\text{(1)}

Now, by AM-GM inequality \color{#3D99F6}{\text{AM-GM inequality}} on ( 1 + 1 a + 1 b + 1 c ) \left(1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right) we have:

( 1 + 1 a + 1 b + 1 c ) 4 1 a b c 4 (2) \left(1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge 4\sqrt[4]{\dfrac{1}{abc}} ~~-~~\text{(2)}

By (1) × (2) \text{(1)}\times \text{(2)} with corresponding sides we get:

( 1 + a + b + c ) ( 1 + 1 a + 1 b + 1 c ) 16 \left(1+a+b+c\right)\left(1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge 16

Equality occurs when a = b = c = 1 a=b=c=1

Hence, a + b + c = 3 a+b+c=\boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...