Equate it

Algebra Level 3

2 ( 2 + 6 ) 3 ( 2 + 3 ) \large \frac{2 ( \sqrt{2} + \sqrt{6} ) }{3 ( \sqrt{ 2 + \sqrt{3} } ) }

If the expression above can be written as m n \frac mn where m and n are coprime positive integers, find m + n m + n .

This problem is a part of the sets - 3's & 4's & " N " for number theory .
Follw me for more questions in the future.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Noel Lo
May 7, 2015

Square the left hand side of the equation and get 4 9 × 2 + 6 + 2 12 2 + 3 \frac{4}{9} \times \frac{2+6+2\sqrt{12}}{2+\sqrt{3}}

= 4 9 8 + 4 3 2 + 3 = 4 9 × 4 = ( 4 3 ) 2 = \frac{4}{9} \frac{8+4\sqrt{3}}{2+\sqrt{3}} = \frac{4}{9} \times 4 = (\frac{4}{3})^2 .

So m n = 4 3 \frac{m}{n} = \frac{4}{3} and m + n = 4 + 3 = 7 m+n = 4+3 = \boxed{7}

Somewhat of an equivalent approach:

2 ( 2 + 6 ) 3 2 + 3 = 2 ( 2 + 6 ) 2 3 2 + 3 = 2 2 2 ( 2 + 3 ) 3 2 + 3 = 4 3 2 + 3 2 + 3 = 4 3 \frac{2(\sqrt2+\sqrt6)}{3\sqrt{2+\sqrt3}}=\frac{2\sqrt{\left(\sqrt2+\sqrt6\right)^2}}{3\sqrt{2+\sqrt3}}=\frac{2\sqrt{2^2(2+\sqrt3)}}{3\sqrt{2+\sqrt3}}=\frac{4}{3}\cdot\frac{\sqrt{2+\sqrt3}}{\sqrt{2+\sqrt3}}=\frac{4}{3}

Prasun Biswas - 6 years, 1 month ago

Log in to reply

Yes , this is easiest.

Nihar Mahajan - 6 years, 1 month ago
Akshat Sharda
Aug 20, 2015

Hey.....do you guys know that the same question is in M T G MTG M a t h s Maths O l y m p i a d Olympiad W o r k b o o k Workbook of C l a s s Class X X .

do you subscribe it??

Akash singh - 5 years, 9 months ago

Log in to reply

I purchased it ^_^

Akshat Sharda - 5 years, 9 months ago
Abhijeet Verma
Apr 10, 2015

First multiplying with 2 3 \sqrt { 2-\sqrt [ ]{ 3 } } then multiplying and dividing the expression by 2 \sqrt { 2 } It becomes 2 3 ( 1 + 3 ) 1 2 3 × 2 = 2 3 ( 1 + 3 ) 1 4 2 3 \frac { 2 }{ 3 } \frac { (1+\sqrt { 3 } ) }{ 1 } \sqrt { 2-\sqrt { 3 } } \times \sqrt { 2 } =\frac { 2 }{ 3 } \frac { (1+\sqrt { 3 } ) }{ 1 } \sqrt { 4-2\sqrt { 3 } } 4 2 3 = 3 1 \sqrt { 4-2\sqrt { 3 } } =\sqrt { 3 } -1 Thus, the expression becomes 4/3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...