Equating Imaginary Powers

Algebra Level 2

True or false :

i 1 × i 2 × i 3 = i 4 × i 5 × i 6 × i 7 \large i^1 \times i^2 \times i^3= i^4 \times i^5 \times i^6 \times i^7

Clarification : i = 1 i=\sqrt{-1} .

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

i 1 × i 2 × i 3 = i 6 = i 2 = 1 i^1 \times i^2 \times i^3 = i^6 = i^2 = -1 ;

i 4 × i 5 × i 6 × i 7 = i 22 = i 2 = 1 i^4 \times i^5 \times i^6 \times i^7 = i^{22} = i^2 = -1

Hung Woei Neoh
Apr 22, 2016

Note that i 4 = i 2 × i 2 = 1 × 1 = 1 i^4 = i^2 \times i^2 = -1 \times -1 = 1

Therefore:

i 4 × i 5 × i 6 × i 7 = i 4 × i 4 × i 1 × i 4 × i 2 × i 4 × i 3 = 1 × 1 × i 1 × 1 × i 2 × 1 × i 3 = i 1 × i 2 × i 3 i^4 \times i^5 \times i^6 \times i^7\\ =i^4 \times i^4 \times i^1 \times i^4 \times i^2 \times i^4 \times i^3\\ =1 \times 1 \times i^1 \times 1 \times i^2 \times 1 \times i^3\\ = i^1 \times i^2 \times i^3

The statement is True \boxed{\text{True}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...