Equation - Algebra

Algebra Level 2

Five positive integers a a , b b , c c , d d and e e greater than 1 make the following conditions true:

{ a ( b + c + d + e ) = 128 b ( a + c + d + e ) = 155 c ( a + b + d + e ) = 203 d ( a + b + c + e ) = 243 e ( a + b + c + d ) = 275 \begin{cases} a(b+c+d+e) = 128 \\ b(a+c+d+e) = 155 \\ c(a+b+d+e) = 203 \\ d(a+b+c+e) = 243 \\ e(a+b+c+d) = 275 \end{cases}

Find the value of e e .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 26, 2018

Let a + b + c + d + e = k a+b+c+d+e=k . Then the five equations reduce to:

{ a ( k a ) = 128 k = 128 a + a = 2 7 a + a b ( k b ) = 155 k = 155 b + b = 5 31 b + b c ( k c ) = 203 k = 203 c + c = 7 29 c + c d ( k d ) = 243 k = 243 d + d = 3 5 d + d e ( k e ) = 275 k = 275 e + e = 5 2 11 e + e \begin{cases} a(k-a) = 128 & \implies k = \dfrac {128}a+a = \dfrac {2^7}a+a \\ b(k-b) = 155 & \implies k = \dfrac {155}b+b = \dfrac {5\cdot 31}b+b \\ c(k-c) = 203 & \implies k = \dfrac {203}c+c = \dfrac {7\cdot 29}c+c \\ d(k-d) = 243 & \implies k = \dfrac {243}d+d = \dfrac {3^5}d+d \\ e(k-e) = 275 & \implies k = \dfrac {275}e+e = \dfrac {5^2\cdot 11}e+e \end{cases}

Let us check the possible values of k k using the k = 5 31 b + b k=\dfrac {5\cdot 31}b+b and k = 7 29 c + c k=\dfrac {7\cdot 29}c+c .

{ b = 1 , k = 156 b = 5 , k = 36 b = 31 , k = 36 b = 155 , k = 156 { c = 1 , k = 204 b = 7 , k = 36 b = 29 , k = 36 b = 203 , k = 204 \begin{cases} b = 1, & k = 156 \\ b = 5, & k = 36 \\ b = 31, & k = 36 \\ b = 155, & k = 156 \end{cases} \quad \begin{cases} c = 1, & k = 204 \\ b = 7, & k = 36 \\ b = 29, & k = 36 \\ b = 203, & k = 204 \end{cases}

This shows that k = 36 k=36 and that b = 5 b=5 and c = 7 c=7 , because the other values are too large. We can find the other values of a a , d d and e e as follows:

128 a + a = k = 36 a 2 36 a + 128 = 0 ( a 4 ) ( a 32 ) = 0 a = 4 \begin{aligned} \frac {128}a+a & = k = 36 \\ \implies a^2 - 36a + 128 & = 0 \\ (a-4)(a-32) & = 0 \\ \implies a & = 4 \end{aligned}

Similarly,

d 2 36 d + 243 = 0 ( d 9 ) ( d 27 ) = 0 d = 9 \begin{aligned} d^2 - 36d + 243 & = 0 \\ (d-9)(d-27) & = 0 \\ \implies d = 9 \end{aligned}

e 2 36 e + 275 = 0 ( e 11 ) ( e 25 ) = 0 e = 11 \begin{aligned} e^2 - 36e + 275 & = 0 \\ (e-11)(e-25) & = 0 \\ \implies e = \boxed{11} \end{aligned}

Let us check the answer k = a + b + c + d + e = 4 + 5 + 7 + 9 + 11 = 36 k = a+b+c+d+e = 4+5+7+9+11 = 36 .

Great solution :)

Kevin Xu - 2 years, 11 months ago
Kevin Xu
Jun 25, 2018

After simplifying: - 1. a(b+c+d+e) = 128 = 27

    1. b(a+c+d+e) = 155 = 5 x 31
    1. c(a+b+d+e) = 203 = 7 x 29
    1. d(a+b+c+e) = 243
    1. e(a+b+c+d) = 275

Equation 2 can reached the solution that b = 5, a+c+d+e = 31 or b = 31, a+c+d+e=5

Equations 3 can reach the conclusion that c = 7, a+b+d+e = 29 or c= 29, a+b+d+e = 7

b = 5 and c = 7 are proven true => a+d+e = 24 => d+e = 24 - a

a(5+7+24=-a) = 128

a=32 (false) or a=4

d+e=20

e=20-d

d(47+5+e)=243

(d-27)(d-9) = 0

d=27 (rejected), d=9

e=11

(check the result with the last equation)

  • Answer: a=4, b=5, c=7, d=9, e=11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...