If the real roots of the above equation are of the form and , where and are square-free positive integers, and and are positive integers, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Short method: With tan ( 1 8 0 ∘ − y ) = tan ( y ) , we can rewrite the equation as x − tan ( 2 0 ∘ ) 1 + x − tan ( 1 4 0 ∘ ) 1 + x − tan ( 8 0 ∘ ) 1 . Notice that tan ( 3 × 2 0 ∘ ) = tan ( 3 × 8 0 ∘ ) = tan ( 3 × 1 4 0 ∘ ) = 3 .
Using the triple angle formula, tan ( 3 y ) = 1 − 3 tan 2 ( y ) 3 tan ( y ) − tan 3 ( y ) , then the equation 3 = 1 − 3 y 2 3 y − y 3 has roots tan ( 2 0 ∘ ) , tan ( 8 0 ∘ ) , tan ( 1 4 0 ∘ ) . Rearranging this equation shows that y 3 − 3 3 y 2 − 3 y + 3 = 0 has roots tan ( 2 0 ∘ ) , tan ( 8 0 ∘ ) , tan ( 1 4 0 ∘ ) .
For simplicities sake, let A , B , C denote the values of tan ( 2 0 ∘ ) , tan ( 1 4 0 ∘ ) , tan ( 8 0 ∘ ) , respectively.
The given equation can be expressed as 3 x 2 − 2 x ( A + B + C ) − ( A B + A C + B C ) = 0 . Vieta's formula shows that A + B + C = 3 3 , A B + A C + B C = − 3 .
Hence, 3 x 2 − 6 3 − 3 = 0 . With the quadratic formula , x = 3 ± 2 . Our answer is 2 + 3 + 2 + 3 = 1 0 .
Long method: With tan ( 1 8 0 ∘ − y ) = tan ( y ) , we can rewrite the equation as x − tan ( 2 0 ∘ ) 1 + x − tan ( 1 4 0 ∘ ) 1 + x − tan ( 8 0 ∘ ) 1 . For simplicities sake, let A , B , C denote the values of tan ( 2 0 ∘ ) , tan ( 1 4 0 ∘ ) , tan ( 8 0 ∘ ) , respectively.
The given equation can be expressed as x − A 1 + x − B 1 + x − C 1 = 0 ⟹ 3 x 2 − 2 x ( A + B + C ) − ( A B + A C + B C ) = 0 .
In order to solve for x , we are left to evaluate the values of A + B + C and A B + A C + B C . Using the compound angle formula, 3 = tan ( 2 0 ∘ + 1 4 0 ∘ + 8 0 ∘ ) = 1 − ( tan ( 2 0 ∘ ) tan ( 1 4 0 ∘ ) + tan ( 2 0 ∘ ) tan ( 8 0 ∘ ) + tan ( 1 4 0 ∘ ) tan ( 8 0 ∘ ) tan ( 2 0 ∘ ) + tan ( 1 4 0 ∘ ) + tan ( 8 0 ∘ ) − tan ( 2 0 ∘ ) tan ( 1 4 0 ∘ ) tan ( 8 0 ∘ ) = 1 − ( A B + A C + B C ) A + B + C − A B C .
Now, using the triple angle formula, tan ( 3 y ) = tan ( y ) tan ( 6 0 ∘ + y ) tan ( 6 0 ∘ − y ) , for y = 2 0 ∘ , we get 3 = tan ( 6 0 ∘ ) = tan ( 2 0 ∘ ) tan ( 4 0 ∘ ) tan ( 8 0 ∘ ) = − tan ( 2 0 ∘ ) tan ( 1 4 0 ∘ ) tan ( 8 0 ∘ ) = − A B C .
Continuing from above, we have 3 = 1 − ( A B + A C + B C ) A B C + 3 .
We now have to find another relationship between A + B + C and A B + A C + B C .
Consider the triple angle formula cos ( 3 y ) = 4 cos 3 ( y ) − 3 cos ( y ) . Then 2 0 ∘ , 1 0 0 ∘ , 1 4 0 ∘ are roots to the equation 2 1 = 4 cos 3 ( y ) − 3 cos ( y ) .
Equivalently, cos ( 2 0 ∘ ) , cos ( 1 0 0 ∘ ) , cos ( 1 4 0 ∘ ) are roots to the equation 8 z 3 − 6 z − 1 = 0 .
Likewise, sec ( 2 0 ∘ ) , sec ( 1 0 0 ∘ ) , sec ( 1 4 0 ∘ ) are roots to the equation 8 / z 3 − 6 / z − 1 = 0 ⇔ z 3 + 6 z 2 − 8 = 0 .
By Vieta's formula ,
{ sec ( 2 0 ∘ ) + sec ( 1 0 0 ∘ ) + sec ( 1 4 0 ∘ ) = 6 sec ( 2 0 ∘ ) sec ( 1 0 0 ∘ ) + sec ( 1 0 0 ∘ ) sec ( 1 4 0 ∘ ) + sec ( 2 0 ∘ ) sec ( 1 4 0 ∘ ) = 0 .
Thus, sec 2 ( 2 0 ∘ ) + sec 2 ( 1 0 0 ∘ ) + sec 2 ( 1 4 0 ∘ ) ( sec 2 ( 2 0 ∘ ) − 1 ) + ( sec 2 ( 1 0 0 ∘ ) − 1 ) + ( sec 2 ( 1 4 0 ∘ ) − 1 ) tan 2 ( 2 0 ∘ ) + tan 2 ( 1 0 0 ∘ ) + tan 2 ( 1 4 0 ∘ ) tan 2 ( 2 0 ∘ ) + tan 2 ( 8 0 ∘ ) + tan 2 ( 1 4 0 ∘ ) A 2 + B 2 + C 2 ( A + B + C ) 2 − 2 ( A B + A C + B C ) = = = = = = 6 2 − 2 ⋅ 0 = 3 6 3 3 3 3 3 3 3 3 3 3
Solving for the two equations 3 = 1 − ( A B + A C + B C ) A B C + 3 and ( A + B + C ) 2 − 2 ( A B + A C + B C ) = 3 3 gives ( A + B + C , A B + A C + B C ) = ( 3 3 , − 3 ) , ( − 3 1 1 , 3 1 1 ) .
However, note that A + B + C = > 0 tan ( 2 0 ∘ ) + > 0 tan ( 8 0 ∘ ) − tan ( 4 0 ∘ ) > 0 . So ( A + B + C , A B + A C + B C ) = ( − 3 1 1 , 3 1 1 ) is an extraneous solution.
Hence, 3 x 2 − 6 3 − 3 = 0 . With the quadratic formula , x = 3 ± 2 . Our answer is 2 + 3 + 2 + 3 = 1 0 .
Alternatively, we can solve for A + B + C using the following:
A + B + C = = = tan ( 2 0 ∘ ) + tan ( 8 0 ∘ ) + tan ( 1 4 0 ∘ ) cos ( 2 0 ∘ ) sin ( 2 0 ∘ ) + cos ( 8 0 ∘ ) sin ( 8 0 ∘ ) + cos ( 1 4 0 ∘ ) sin ( 1 4 0 ∘ ) cos ( 2 0 ∘ ) cos ( 8 0 ∘ ) cos ( 1 4 0 ∘ ) sin ( 2 0 ∘ ) cos ( 8 0 ∘ ) cos ( 1 4 0 ∘ ) + cos ( 2 0 ∘ ) sin ( 8 0 ∘ ) cos ( 1 4 0 ∘ ) + cos ( 2 0 ∘ ) cos ( 8 0 ∘ ) cos ( 1 4 0 ∘ )
Notice that the by using the compound angle formula twice, we have sin ( X + Y + Z ) = = sin ( X + Y ) cos ( Z ) + cos ( X + Y ) sin ( Z ) sin ( X ) cos ( Y ) cos ( Z ) + cos ( X ) sin ( Y ) sin ( Z ) + cos ( X ) cos ( Y ) sin ( Z ) − sin ( X ) sin ( Y ) sin ( Z )
Therefore, A + B + C = cos ( 2 0 ∘ ) cos ( 8 0 ∘ ) cos ( 1 4 0 ∘ ) sin ( 2 0 ∘ + 8 0 ∘ + 1 4 0 ∘ ) − sin ( 2 0 ∘ ) sin ( 8 0 ∘ ) sin ( 1 4 0 ∘ ) = cos ( 2 0 ∘ ) cos ( 8 0 ∘ ) cos ( 1 4 0 ∘ ) sin ( 2 4 0 ∘ ) − = − 3 tan ( 2 0 ∘ ) tan ( 8 0 ∘ ) tan ( 1 4 0 ∘ ) .
Using the triple angle formula as shown above, we can deduce that cos ( 2 0 ∘ ) cos ( 8 0 ∘ ) cos ( 1 4 0 ∘ ) = − 8 1 . The rest will follow.