Equation of radicals

Algebra Level 4

Let x 0 x_0 be the positive solution to the equation 1 + x 2 x = 1 + x 2 1. \large \frac{\sqrt{1+x^2}}{x} = \sqrt{1+x^2}-1. If the expression ( ( 2 2 2 ) x 0 1 ) 2 \left((2\sqrt{2}-2)x_0-1\right)^2 is of the form a + b c a+b\sqrt{c} , where a , b , c a,b,c are integers, and c c is square free, what is the value of a + b + c a+b+c ?


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 30, 2017

1 + x 2 x = 1 + x 2 1 Dividing both sides by 1 + x 2 1 x = 1 1 1 + x 2 1 1 + x 2 = 1 1 x Squaring both sides 1 1 + x 2 = ( x 1 x ) 2 x 2 = ( 1 + x 2 ) ( x 2 2 x + 1 ) x 4 2 x 3 + x 2 2 x + 1 = 0 Dividing both sides by x 2 x 2 2 x + 1 2 x + 1 x 2 = 0 ( x + 1 x ) 2 2 ( x + 1 x ) 1 = 0 x + 1 x = 1 ± 2 x 2 ( 1 ± 2 ) x + 1 = 0 For positive root x 0 x 0 2 ( 1 + 2 ) x 0 + 1 = 0 x 0 2 = ( 2 + 1 ) x 0 1 . . . ( 1 ) \begin{aligned} \frac {\sqrt{1+x^2}}x & = \sqrt{1+x^2} - 1 & \small \color{#3D99F6} \text{Dividing both sides by }\sqrt{1+x^2} \\ \frac 1x & = 1 - \frac 1{\sqrt{1+x^2}} \\ \frac 1{\sqrt{1+x^2}} & = 1 - \frac 1x & \small \color{#3D99F6} \text{Squaring both sides} \\ \frac 1{1+x^2} & = \left(\frac {x-1}x\right)^2 \\ x^2 & = (1+x^2)(x^2-2x+1) \\ \implies x^4 - 2x^3 + x^2 - 2x + 1 & = 0 & \small \color{#3D99F6} \text{Dividing both sides by }x^2 \\ x^2 - 2x + 1 - \frac 2x + \frac 1{x^2} & = 0 \\ \left(x + \frac 1x\right)^2 - 2\left(x + \frac 1x\right) - 1 & = 0 \\ \implies x + \frac 1x & = 1 \pm \sqrt 2 \\ x^2 - (1 \pm \sqrt 2) x + 1 & = 0 & \small \color{#3D99F6} \text{For positive root }x_0 \\ \implies x_0^2 - (1 + \sqrt 2) x_0 + 1 & = 0 \\ \implies x_0^2 & = (\sqrt 2+1) x_0 - 1 \ \ ...(1) \end{aligned}

Now we have:

y = ( ( 2 2 2 ) x 0 1 ) 2 = ( 2 ( 2 1 ) x 0 1 ) 2 = 4 ( 2 1 ) 2 x 0 2 4 ( 2 1 ) x 0 + 1 ( 1 ) : x 0 2 = ( 2 + 1 ) x 0 1 = 4 ( 2 1 ) 2 [ ( 2 + 1 ) x 0 1 ] 4 ( 2 1 ) x 0 + 1 = 4 ( 2 1 ) x 0 4 ( 2 1 ) 2 4 ( 2 1 ) x 0 + 1 = 4 ( 3 2 2 ) + 1 = 11 + 8 2 \begin{aligned} y & = \left((2\sqrt 2 - 2)x_0 - 1\right)^2 \\ & = \left(2(\sqrt 2 - 1)x_0 - 1\right)^2 \\ & = 4(\sqrt 2 - 1)^2{\color{#3D99F6} x_0^2} - 4(\sqrt 2 - 1)x_0 + 1 & \small \color{#3D99F6} (1): \ \ x_0^2 = (\sqrt 2+1) x_0 - 1 \\ & = 4(\sqrt 2 - 1)^2{\color{#3D99F6} \left[(\sqrt 2+1) x_0 - 1\right]} - 4(\sqrt 2 - 1)x_0 + 1 \\ & = 4(\sqrt 2 - 1)x_0 - 4(\sqrt 2 - 1)^2 - 4(\sqrt 2 - 1)x_0 + 1 \\ & = - 4(3-2\sqrt 2) + 1 \\ & = -11 + 8\sqrt 2 \end{aligned}

a + b + c = 11 + 8 + 2 = 1 \implies a+b+c = -11+8+2 = \boxed{-1}

Whoa, I didn't think there will be simple way to solve this. What a nice work!

Perathorn Pooksombat - 4 years ago

This is the full solution to the equation using trigonometric functions. Since there is an expression x 2 + 1 \sqrt{x^2+1} , so it might be possible to substitute by x = tan θ x=\tan\theta .

Because we want a positive solution, suppose that x = tan θ x=\tan\theta , where 0 < θ < π 2 0 < \theta < \frac{\pi}{2} . The equation is transformed into sec 2 θ tan θ = sec 2 θ 1. \frac{\sqrt{\sec^2\theta}}{\tan\theta} = \sqrt{\sec^2\theta}-1. Since we choose the range 0 < θ < π 2 0 < \theta < \frac{\pi}{2} , we have sec θ > 0 \sec\theta>0 . Hence, sec θ tan θ = sec θ 1 , 1 sin θ = 1 cos θ 1 , 1 cos θ 1 sin θ = 1. \begin{aligned} \frac{\sec\theta}{\tan\theta} &= \sec\theta-1,\\[10pt] \frac{1}{\sin\theta} &= \frac{1}{\cos\theta}-1,\\[10pt] \frac{1}{\cos\theta}-\frac{1}{\sin\theta} &= 1. \end{aligned} Squaring equation gives 1 cos 2 θ 2 sin θ cos θ + 1 sin 2 θ = 1 , 1 sin 2 θ cos 2 θ 2 sin θ cos θ = 1 , 4 sin 2 2 θ 4 sin θ = 1 , 4 csc 2 2 θ 4 csc 2 θ 1 = 0 , csc 2 θ = 1 ± 2 2 , sin 2 θ = 2 1 ± 2 . \begin{aligned} \frac{1}{\cos^2\theta} - \frac{2}{\sin\theta\cos\theta} + \frac{1}{\sin^2\theta} &= 1,\\[10pt] \frac{1}{\sin^2\theta\cos^2\theta}-\frac{2}{\sin\theta\cos\theta} &= 1,\\[10pt] \frac{4}{\sin^2 2\theta} - \frac{4}{\sin\theta} &= 1,\\[10pt] 4\csc^2 2\theta-4\csc 2\theta-1 &= 0,\\[10pt] \csc 2\theta &= \frac{1 \pm \sqrt{2}}{2},\\[10pt] \sin 2\theta &= \frac{2}{1 \pm \sqrt{2}}. \end{aligned} Because 0 < 2 θ < π 0 < 2\theta < \pi , we have that sin 2 θ > 0 \sin 2\theta>0 , that is, sin 2 θ = 2 1 + 2 = 2 2 2 \sin 2\theta = \frac{2}{1+\sqrt{2}}=2\sqrt{2}-2 . As a result, cos 2 θ = ± 8 2 11 \cos 2\theta = \pm \sqrt{8\sqrt{2}-11} . Therefore, tan θ = 1 cos 2 θ sin 2 θ = 1 ± 8 2 11 2 2 2 . \tan\theta = \frac{1-\cos 2\theta}{\sin 2\theta} = \frac{1 \pm \sqrt{8\sqrt{2}-11}}{2\sqrt{2}-2}. However, the solution must be bigger than 1 1 (reason lies below), so that the only positive solution is x 0 = 1 + 8 2 11 2 2 2 , x_0 = \frac{1 + \sqrt{8\sqrt{2}-11}}{2\sqrt{2}-2}, which gives [ ( 2 2 2 ) x 0 1 ] 2 = 8 2 11 [(2\sqrt{2}-2)x_0-1]^2 = 8\sqrt{2}-11 . The solution to this question is 11 + 8 + 2 = 1 -11+8+2=\boxed{-1} , as desired.

In general, if it doesn't specify that the solution is positive, this equation still has unique solution. Obviously, zero isn't solution, so we are looking for nonzero solution. From the equation, we can express it as x = 1 + x 2 1 + x 2 1 = ( 1 + x 2 ) ( 1 + x 2 + 1 ) x 2 > 0. x = \frac{\sqrt{1+x^2}}{\sqrt{1+x^2}-1} = \frac{(\sqrt{1+x^2})(\sqrt{1+x^2}+1)}{x^2} > 0. This tells us that solution must be positive. Moreover, we obtain from the above equation that x 3 = 1 + x 2 + 1 + x 2 > 1 , x^3 = 1+x^2+\sqrt{1+x^2} > 1, together with the fact that x > 0 x>0 , we finally get x > 1 x>1 . Therefore, this equation has unique solution as derived earlier.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...