Equation root in determinant

Algebra Level pending

Let x 1 x_1 , x 2 x_2 , x 3 x_3 and x 4 x_4 are the roots of the equation x 4 + p x 2 + q x + r = 0 x^4+px^2+qx+r=0 . Find the value of the determinant

x 1 x 2 x 3 x 4 x 2 x 3 x 4 x 1 x 3 x 4 x 1 x 2 x 4 x 1 x 2 x 3 \begin{vmatrix}\ x_1 & x_2 & x_3 & x_4 \\ \\ x_2 & x_3 & x_4 & x_1 \\ \\ x_3 & x_4 & x_1 & x_2 \\ \\ x_4 & x_1 & x_2 & x_3\ \end{vmatrix} ,


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 26, 2020

Adding the second, third and fourth rows to the first, we see that x 1 x 2 x 3 x 4 x 2 x 3 x 4 x 1 x 3 x 4 x 1 x 2 x 4 x 1 x 2 x 3 = x 1 + x 2 + x 3 + x 4 x 1 + x 2 + x 3 + x 4 x 1 + x 2 + x 3 + x 4 x 1 + x 2 + x 3 + x 4 x 2 x 3 x 4 x 1 x 3 x 4 x 1 x 2 x 4 x 1 x 2 x 3 = ( x 1 + x 2 + x 3 + x 4 ) 1 1 1 1 x 2 x 3 x 4 x 1 x 3 x 4 x 1 x 2 x 4 x 1 x 2 x 3 \begin{aligned} \left| \begin{array}{cccc} x_1 & x_2 & x_3 & x_4 \\ x_2 & x_3 & x_4 & x_1 \\ x_3 & x_4 & x_1 & x_2 \\ x_4 & x_1 & x_2 & x_3 \end{array}\right| & = \; \left| \begin{array}{cccc} x_1 + x_2 + x_3 + x_4 & x_1 + x_2 + x_3 + x_4 & x_1 + x_2 + x_3 + x_4 & x_1 + x_2 + x_3 + x_4 \\ x_2 & x_3 & x_4 & x_1 \\ x_3 & x_4 & x_1 & x_2 \\ x_4 & x_1 & x_2 & x_3 \end{array}\right| \\ & = \; (x_1 + x_2 + x_3 + x_4) \left| \begin{array}{cccc} 1 & 1 & 1 & 1 \\ x_2 & x_3 & x_4 & x_1 \\ x_3 & x_4 & x_1 & x_2 \\ x_4 & x_1 & x_2 & x_3 \end{array}\right| \end{aligned} Since x 1 + x 2 + x 3 + x 4 = 0 x_1 + x_2 + x_3 + x_4 = 0 , this determinant is equal to 0 \boxed{0} .

It is interesting to note that the determinant factorises as ( x 1 + x 2 + x 3 + x 4 ) ( x 1 + i x 2 x 3 i x 4 ) ( x 1 x 2 + x 3 x 4 ) ( x 1 i x 2 x 3 + i x 4 ) -(x_1 + x_2 + x_3 + x_4)(x_1 + ix_2 - x_3 -ix_4)(x_1 - x_2 + x_3 - x_4)(x_1 -ix_2 - x_3 +ix_4)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...