Equations

Algebra Level 4

Find number of quadratic equations of the form y = x 2 + b x + c y = x^2 + bx + c that remain unchanged after squaring their roots.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nishant Sharma
May 22, 2016

Let's try to make things simple. Let α , β \alpha, \beta be the roots of the equation y = a x 2 + b x + c y=ax^{2}+bx+c . The problem requires that α 2 , β 2 \alpha^2, \beta^2 are also the roots of the same equation. This is possible if we have the following:

α + β = α 2 + β 2 \alpha+\beta=\alpha^2+\beta^2

( α + β ) 2 2 α β = α + β ( i ) \implies\left(\alpha+\beta\right)^2-2\alpha\beta=\alpha+\beta\;\;-\left(i\right) and

α β = α 2 β 2 ( i i ) \alpha\beta=\alpha^2\beta^2\;\;-\left(ii\right)

From ( i i ) \left(ii\right) we have, α β ( α β 1 ) = 0 \alpha\beta\left(\alpha\beta-1\right)=0 . This gives rise to the following cases:

C A S E I : \underline{\mathbf{CASE\,I}}:

α = 0 β = 0 , 1 \alpha=0\implies\beta=0,1 . So the equations are:

y = { x 2 x + 0 when α = β = 0 x 2 + 0 x + 0 when α = 0 , β = 1 y=\begin{cases} x^2-x+0\;\;\;\;& \quad \text{when}\;\alpha=\beta=0\\ x^2+0\cdot\,x+0\;\;& \quad \text{when}\;\alpha=0,\,\beta=1\\ \end{cases}

C A S E I I : \underline{\mathbf{CASE\,II}}:

β = 0 α = 0 , 1 \beta=0\implies\alpha=0,1 . This yields same equations as CASE I .

C A S E I I I : \underline{\mathbf{CASE\,III}}:

α β = 1 \alpha\beta=1 . Substituting this in ( i ) \left(i\right) we get

( α + β ) 2 ( α + β ) 2 = 0 \left(\alpha+\beta\right)^2-\left(\alpha+\beta\right)-2=0

α + β = 1 , 2 \implies\;\alpha+\beta=-1,2

So the equations are:

y = { x 2 + x + 1 when α + β = 1 , α β = 1 x 2 2 x + 1 when α + β = 2 , α β = 1 y=\begin{cases} x^2+x+1\;\;\;& \quad \text{when}\;\alpha+\beta=-1,\,\alpha\beta=1\\ x^2-2x+1\;\;\;& \quad \text{when}\;\alpha+\beta=2,\,\alpha\beta=1\\ \end{cases}

So we have a total of 4 \boxed{4} different quadratic equations of the form y = a x 2 + b x + c y=ax^2+bx+c with the given conditions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...