Equations involving logarithms

Algebra Level 2

log 10 ( x ) = 1 0 log 10 ( 3 ) \log_{10}(x) = 10^{\log_{10}(3)}

Find x x .


The answer is 1000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hung Woei Neoh
Apr 28, 2016

log 10 ( x ) = 1 0 log 10 ( 3 ) log 10 ( log 10 ( x ) ) = log 10 ( 1 0 log 10 ( 3 ) ) log 10 ( log 10 ( x ) ) = log 10 ( 3 ) log 10 ( 10 ) log 10 ( log 10 ( x ) ) = log 10 ( 3 ) log 10 ( x ) = 3 x = 1 0 3 = 1000 \log_{10} (x) = 10^{\log_{10}(3)}\\ \log_{10}\left(\log_{10} (x) \right) = \log_{10}\left(10^{\log_{10}(3)}\right)\\ \log_{10}\left(\log_{10} (x) \right) = \log_{10}(3)\log_{10}(10)\\ \log_{10}\left(\log_{10} (x) \right) = \log_{10}(3)\\ \log_{10}(x) = 3\\ x=10^3 = \boxed{1000}

log 10 ( x ) = 1 0 log 10 ( 3 ) \log_{10}(x)=10^{\log_{10}(3)} or log 10 ( x ) = 3 \log_{10}(x)=3 or x = 1 0 3 = 1000 x=10^3=\boxed{1000} .

log 10 ( x ) = 1 0 log 10 ( 3 ) log 10 ( x ) = log 10 ( 1 0 1 0 log 10 ( 3 ) ) x = 1 0 3 x = 1000 \begin{aligned} \log_{10}(x) = 10^{\log_{10}(3)} &\Rightarrow \log_{10}(x) = \log_{10}\left(10^{10^{\log_{10}(3)}}\right) \\&\Rightarrow x = 10^3 \\&\Rightarrow x = 1000 \space \square \end{aligned}

ADIOS!!! \LARGE \text{ADIOS!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...