Equations of fraction

Algebra Level 2

{ x a + y b = 2 a + 1 b x b y a = 2 b 1 a \large \begin{cases} \dfrac{x}{a} + \dfrac{y}{b} = \dfrac{2}{a} + \dfrac{1}{b} \\ \dfrac{x}{b} - \dfrac{y}{a} = \dfrac{2}{b} - \dfrac{1}{a} \end{cases}

Solve the system of equations above for positive x x and y y .

Enter your answer as x + y x + y


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 21, 2017

{ x a + y b = 2 a + 1 b x a y b = 2 a 1 b \begin{cases} {\color{#3D99F6}\dfrac xa}+{\color{#D61F06} \dfrac yb} = {\color{#3D99F6}\dfrac 2a}+{\color{#D61F06} \dfrac 1b} \\ {\color{#3D99F6}\dfrac xa}-{\color{#D61F06} \dfrac yb} = {\color{#3D99F6} \dfrac 2a}-{\color{#D61F06} \dfrac 1b} \end{cases}

By observation, we note that x = 2 \color{#3D99F6} x=2 and y = 1 \color{#D61F06} y=1 , hence x + y = 3 x+y=\boxed{3} .

Does this method work for every problems like this?

Munem Shahriar - 3 years, 7 months ago

Log in to reply

No, but this one does.

Chew-Seong Cheong - 3 years, 7 months ago

I solve it like you.

Hana Wehbi - 3 years, 7 months ago
Munem Shahriar
Oct 20, 2017

x a + y b = 2 a + 1 b . . . . . . ( 1 ) \large \frac xa + \frac yb = \frac2a + \frac1b ...... (1)

x b y a = 2 b 1 a . . . . . . . ( 2 ) \large \frac xb - \frac ya = \frac2b - \frac1a ....... (2)

From equation ( 1 ) , (1),

x a + y b = 2 a + 1 b \dfrac{x}{a} + \dfrac{y}{b} = \dfrac{2}{a} + \dfrac{1}{b}

b x + a y a b = 2 b + a a b \Rightarrow \dfrac{bx+a y}{ab} = \dfrac{2b+a}{ab}

b x + a y = 2 b + a \Rightarrow bx+ay = 2b+a

b x = 2 b + a a y \Rightarrow bx = 2b+a-ay

x = 2 b + a a y b . . . . . . . . ( 3 ) \Rightarrow x = \dfrac{2b+a - ay}{b} ........ (3)

Substituting x x in equation ( 2 ) , (2),

2 b + a a y b b y a = 2 b 1 a \dfrac{\frac{2b+a-ay}{b}}{b} - \dfrac ya = \dfrac2b - \dfrac 1a

2 b + a a y b × 1 b y a = 2 b 1 a \Rightarrow \dfrac{2b+a-ay}{b} \times \dfrac 1b - \dfrac ya = \dfrac2b - \dfrac 1a

2 b + a a y b 2 = 2 b 1 a + y a \Rightarrow \dfrac{2b+a-ay}{b^2} = \dfrac2b - \dfrac 1a + \dfrac ya

2 b + a a y b 2 = 2 a b + b y a b \Rightarrow \dfrac{2b+a-ay}{b^2} = \dfrac{2a-b+by}{ab}

2 b + a a y b = 2 a b + b y a \Rightarrow \dfrac{2b+a-ay}{b} = \dfrac{2a-b+by}{a}

2 a b + a 2 a 2 y = 2 a b b 2 + b 2 y \Rightarrow 2ab+a^2- a^2y = 2ab - b^2 + b^2y

a 2 a 2 y = b 2 y b 2 \Rightarrow a^2 - a^2y = b^2y - b^2

a 2 y b 2 y = b 2 a 2 \Rightarrow -a^2y - b^2y = -b^2 -a^2

y ( a 2 + b 2 ) = ( a 2 + b 2 ) \Rightarrow -y (a^2+b^2) = -(a^2+b^2)

So y = 1 y =1

Substituting y y in equation ( 3 ) , (3),

x = 2 b + a a 1 b x = \dfrac{2b + a- a \cdot 1}{b}

x = 2 b + a a b \Rightarrow x= \dfrac{2b+a-a}{b}

x = 2 b b \Rightarrow x = \dfrac{2b}{b}

So x = 2 x = 2

Hence ( x , y ) = ( 2 , 1 ) x + y = 3 (x,y) = (2,1) \implies x+ y = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...