⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ a x + b y = a 2 + b 1 b x − a y = b 2 − a 1
Solve the system of equations above for positive x and y .
Enter your answer as x + y
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Does this method work for every problems like this?
I solve it like you.
a x + b y = a 2 + b 1 . . . . . . ( 1 )
b x − a y = b 2 − a 1 . . . . . . . ( 2 )
From equation ( 1 ) ,
a x + b y = a 2 + b 1
⇒ a b b x + a y = a b 2 b + a
⇒ b x + a y = 2 b + a
⇒ b x = 2 b + a − a y
⇒ x = b 2 b + a − a y . . . . . . . . ( 3 )
Substituting x in equation ( 2 ) ,
b b 2 b + a − a y − a y = b 2 − a 1
⇒ b 2 b + a − a y × b 1 − a y = b 2 − a 1
⇒ b 2 2 b + a − a y = b 2 − a 1 + a y
⇒ b 2 2 b + a − a y = a b 2 a − b + b y
⇒ b 2 b + a − a y = a 2 a − b + b y
⇒ 2 a b + a 2 − a 2 y = 2 a b − b 2 + b 2 y
⇒ a 2 − a 2 y = b 2 y − b 2
⇒ − a 2 y − b 2 y = − b 2 − a 2
⇒ − y ( a 2 + b 2 ) = − ( a 2 + b 2 )
So y = 1
Substituting y in equation ( 3 ) ,
x = b 2 b + a − a ⋅ 1
⇒ x = b 2 b + a − a
⇒ x = b 2 b
So x = 2
Hence ( x , y ) = ( 2 , 1 ) ⟹ x + y = 3
Problem Loading...
Note Loading...
Set Loading...
⎩ ⎪ ⎨ ⎪ ⎧ a x + b y = a 2 + b 1 a x − b y = a 2 − b 1
By observation, we note that x = 2 and y = 1 , hence x + y = 3 .