Equidistant points on a unit circle (part 2)

Geometry Level 4

The diagram shows 28 equidistant points (labeled 0,1,2,...,27) placed on a unit circle centered at point A .

Join the point 0 0 to each of the other points, and let x k x_k denote the length of the segment joining the points 0 0 and k . k.

Find the value of 100 k = 1 14 x k 2 . \displaystyle\left\lfloor 100\sum_{k=1}^{14} x_k^2 \right\rfloor.

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 3000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chris Lewis
Nov 7, 2018

Define y k y_k per the diagram; we have

x k 2 + y k 2 = 2 2 x_k^2+y_k^2=2^2

Now note that by symmetry, y k = x 14 k y_k=x_{14-k} ; this justifies the first line below:

2 k = 0 14 x k 2 = k = 0 14 x k 2 + k = 0 14 y k 2 = k = 0 14 ( x k 2 + y k 2 ) = k = 0 14 4 = 60 k = 0 14 x k 2 = 30 \begin{aligned} 2\sum_{k=0}^{14}x_k^2 &= \sum_{k=0}^{14}x_k^2 + \sum_{k=0}^{14}y_k^2 \\ &= \sum_{k=0}^{14} \left( x_k^2 +y_k^2 \right) \\ &= \sum_{k=0}^{14} 4 \\ &= 60 \\ \\ \sum_{k=0}^{14}x_k^2 &= 30 \end{aligned}

and since x 0 = 0 x_0=0 , this is in fact the required sum.


k = 1 14 100 ( X k ) 2 = n = 0 13 100 ( X n ) 2 = 3000. \displaystyle ~\sum_{k=1}^{14} 100* (X_k)^2\\ \displaystyle=\sum_{n=0}^{13} 100* (X_n)^2=3000.

Niranjan Khanderia - 2 years, 7 months ago

Relevant wiki: Cosine Rule (Law of Cosines)

By cosine rule, x k 2 = 1 2 + 1 2 2 cos k π 14 x_k^2 = 1^2 + 1^2 - 2\cos \dfrac {k\pi}{14} . Then,

S = k = 1 14 x k 2 = k = 1 14 ( 2 2 cos k π 14 ) = k = 1 14 2 2 k = 1 14 cos k π 14 = 28 2 ( k = 1 6 cos k π 14 + cos 7 π 14 + k = 8 13 cos k π 14 + cos 14 π 14 ) = 28 2 ( k = 1 6 cos k π 14 + cos π 2 + k = 1 6 cos ( π k π 14 ) + cos π ) Note that cos ( π θ ) = cos θ = 28 2 ( k = 1 6 cos k π 14 + 0 k = 1 6 cos k π 14 1 ) = 28 2 ( 1 ) = 30 \begin{aligned} S & = \sum_{k=1}^{14} x_k^2 \\ & = \sum_{k=1}^{14} \left(2 - 2\cos \frac {k\pi}{14} \right) \\ & = \sum_{k=1}^{14} 2 - 2 \sum_{k=1}^{14} \cos \frac {k\pi}{14} \\ & = 28 - 2\left(\sum_{k=1}^6 \cos \frac {k\pi}{14} + \cos \frac {7\pi}{14} + \sum_{k=8}^{13} \cos \frac {k\pi}{14} + \cos \frac {14\pi}{14} \right) \\ & = 28 - 2\left(\sum_{k=1}^6 \cos \frac {k\pi}{14} + \cos \frac \pi 2\ {\color{#3D99F6} + \sum_{k=1}^6 \cos \left(\pi - \frac {k\pi}{14}\right)} + \cos \pi \right) & \small \color{#3D99F6} \text{Note that }\cos (\pi - \theta) = - \cos \theta \\ & = 28 - 2\left(\cancel{\sum_{k=1}^6 \cos \frac {k\pi}{14}} + 0\ \cancel{{\color{#3D99F6} - \sum_{k=1}^6 \cos \frac {k\pi}{14}}} -1 \right) \\ & = 28 - 2(-1) = 30 \end{aligned}

Therefore, 100 S = 3000 \lfloor 100S\rfloor = \boxed{3000} .

Chan Lye Lee
Nov 6, 2018

Let A = ( 0 , 0 ) A=(0,0) and the 28 points on the unit circle, each of these is a roots of x 28 = 1 x^{28}=1 . This means that each point can be represented by a complex number w k = cos k π 14 + i sin k π 14 w_k = \cos\frac{k\pi}{14} + i\sin\frac{k\pi}{14} , where k = 0 , 1 , 2 , , 27 k=0,1,2, \ldots, 27 . The sum of roots is k = 0 27 w k = 0 \displaystyle\sum_{k=0}^{27} w_k=0 .

We may use the idea of vector. Now x k = 1 w k x_k =\left|1-w_k\right| and hence x k 2 = 1 w k 2 = ( 1 w k ) ( 1 w k ) = ( 1 1 ) 2 ( 1 w k ) + ( w k w k ) = 2 2 ( 1 w k ) x_k^2 = \left|1-w_k\right|^2 = \left(1-w_k\right) \cdot \left(1-w_k\right) = \left(1\cdot 1\right) -2\left(1\cdot w_k\right) + \left(w_k\cdot w_k\right) = 2 - 2\left(1\cdot w_k\right)

Note that k = 0 27 x k 2 = k = 0 27 ( 2 2 ( 1 w k ) ) = 56 2 ( 1 k = 0 27 w k ) = 56 \sum_{k=0}^{27} x_k^2 = \sum_{k=0}^{27} \left(2 - 2\left(1\cdot w_k\right)\right) = 56 - 2 \left( 1\cdot \sum_{k=0}^{27} w_k \right) = 56

By symmetry, S = k = 1 13 x k 2 = k = 15 27 x k 2 \displaystyle S=\sum_{k=1}^{13} x_k^2= \sum_{k=15}^{27} x_k^2 . It is clear that x 14 2 = 2 2 = 4 x_{14}^2 = 2^2=4 as x 14 x_{14} is the length of a diameter. Now 56 = k = 0 27 x k 2 = k = 1 27 x k 2 = ( k = 1 13 x k 2 ) + x 14 2 + ( k = 15 27 x k 2 ) = 2 S + 4 \displaystyle 56=\sum_{k=0}^{27} x_k^2 =\sum_{k=1}^{27} x_k^2 = \left(\sum_{k=1}^{13} x_k^2 \right)+x_{14}^2 + \left(\sum_{k=15}^{27} x_k^2 \right) = 2S+4 which implies that S = 26 S=26 .

So k = 1 14 x k 2 = 26 + 4 = 30 \displaystyle \sum_{k=1}^{14} x_k^2 = 26+4=30 and hence 100 k = 1 14 x k 2 = 3000 \displaystyle\left\lfloor 100\sum_{k=1}^{14} x_k^2 \right\rfloor =3000 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...