Equidistant Triangle Centers (take 2)

Geometry Level pending

You are given a triangle in which the Gergonne center and the Nagel center are equidistant from the Centroid. The shortest side this triangle has length 5, while the longest side has length 9. Find the length of the middle side.

Feel free to ask questions here


The answer is 6.70671.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 12, 2021

The Nagel point Na has barycentric coordinates s a : s b : s c s-a:s-b:s-c . As the isotomic conjugate of Na, the Gergonne point Ge has barycentric coordinates 1 s a : 1 s b : 1 s c \tfrac{1}{s-a}:\tfrac{1}{s-b}:\tfrac{1}{s-c} . The centroid G has barycentric coordinates 1 : 1 : 1 1:1:1 .

The distance between points P and Q with normalized barycentric coordinates p 1 : p 2 : p 3 p_1:p_2:p_3 and q 1 : q 2 : q 3 q_1:q_2:q_3 (so that p 1 + p 2 + p 3 = q 1 + q 2 + q 3 = 1 p_1+p_2+p_3=q_1+q_2+q_3=1 ) is given by the formula P Q 2 = a 2 ( p 2 q 2 ) ( p 3 q 3 ) b 2 ( p 1 q 1 ) ( p 3 q 3 ) c 2 ( p 1 q 1 ) ( p 2 q 2 ) PQ^2 = -a^2(p_2-q_2)(p_3-q_3) - b^2(p_1-q_1)(p_3-q_3) - c^2(p_1-q_1)(p_2-q_2) Normalizing the coordinates for Ge, Na and G, we calculate that G e G 2 N a G 2 = 8 X ( a + b + c ) ( a 2 + b 2 + c 2 2 a b 2 a c 2 b c ) 2 GeG^2 - NaG^2 \; = \; \frac{8X}{(a+b+c)(a^2+b^2+c^2 - 2ab - 2ac - 2bc)^2} where X = ( a 6 b + a b 6 + a 6 c + a c 6 + b 6 c + b c 6 ) 3 ( a 5 b 2 + a 3 b 5 + a 5 c 2 + a 2 c 5 + b 5 c 2 + b 2 c 5 ) + 2 ( a 4 b 3 + a 3 b 4 + a 4 c 3 + a 3 c 4 + b 4 c 3 + b 3 c 4 ) 4 a b c ( a 4 + b 4 + c 4 ) + 7 a b c ( a 3 b + a 3 c + a b 3 + b 3 c + a c 3 + b c 3 ) 8 a b c ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) 2 a 2 b 2 c 2 ( a + b + c ) X \; = \; \begin{array}{l} (a^6b + ab^6 + a^6c + ac^6 + b^6c + bc^6) - 3(a^5b^2 + a^3b^5 + a^5c^2 + a^2c^5 + b^5c^2 + b^2c^5) + 2(a^4b^3 + a^3b^4 + a^4c^3 + a^3c^4 + b^4c^3 + b^3c^4) \\{} - 4abc(a^4 + b^4 + c^4) + 7abc(a^3b + a^3c + ab^3 + b^3c + ac^3 + bc^3) - 8abc(a^2b^2 + a^2c^2 + b^2c^2) - 2a^2b^2c^2(a + b + c) \end{array} We want to find triangles A B C ABC for which X = 0 X=0 . With b = 5 , c = 9 b=5\,,\,c=9 this equation becomes 0 = 2 ( 80640 + 13568 a + 12894 a 2 13919 a 3 + 3059 a 4 249 a 5 + 7 a 6 ) 0 \; =\; 2 (80640 + 13568 a + 12894 a^2 - 13919 a^3 + 3059 a^4 - 249 a^5 + 7 a^6) which has two positive real roots, a = 4.16864 a =4.16864 and a = 6.70671 a = 6.70671 . Since b = 5 < a < 9 = c b = 5 < a < 9 = c , we deduce that a = 6.70671 a = \boxed{6.70671} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...