Equilateral Sangaku

Geometry Level 4

In an equilateral triangle ABC of side 8 units lines BEF, CFD, ADE are drawn making equal angles with AB, BC, CA, respectively, forming the triangle DEF, and so that the radius 'r' of the in-circle of triangle DEF is equal to the radii of the incircles of triangles ABE, BCF, and ACD. Determine the value of 'r'.

√8-√3 √10 -√3 √7-√3 3-√3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ajit Athle
Nov 17, 2018

Let AD =x then DF=2(√3)r
8-x+r/√(3) = x+2 √(3) r - r/√(3)
Apply co-sine rule in triangle ADC (angle ADC=120°)
(x+2 √(3) r)²+x²+x (x+2√(3) r)=64
r= √7 –√3

Hassan Abdulla
Dec 17, 2018

let r be the radius of the circle Δ D E F is equilateral E F = 2 r 3 H F = J E = r 3 B J = C H = C G B G = B I = B J + J E + E F I F B G = C G + r 3 + 2 r 3 r 3 = C G + 2 r 3 B C = B G + G C 8 = C G + 2 r 3 + C G C G = 4 r 3 B G = 4 + r 3 β = G B O = I B O α = H C O = O C G α + β = 30 ° tan ( α ) = r 4 r 3 tan ( β ) = r 4 + r 3 tan ( α + β ) = tan ( α ) + tan ( β ) 1 tan ( α ) tan ( β ) tan ( 30 ° ) = r 4 r 3 + r 4 + r 3 1 r 4 r 3 r 4 + r 3 1 3 = 8 r 16 4 r 2 r 2 + 2 3 r 4 = 0 r = 3 ± 7 r = 7 3 \text{let r be the radius of the circle} \\ \Delta DEF \text{ is equilateral} \Rightarrow \left | E F \right | = 2 r\sqrt{3} \\ \left | H F \right | =\left | J E \right | = \frac{r}{\sqrt{3}} \\ \left | BJ \right | =\left | CH \right |=\left | CG \right | \\ \left | BG \right | =\left | BI \right | = \left | BJ \right |+\left | JE \right |+\left | EF \right |-\left | IF \right | \\ \left | BG \right | = \left | CG \right |+\frac{r}{\sqrt{3}}+2 r\sqrt{3}-\frac{r}{\sqrt{3}}=\left | CG \right |+2 r\sqrt{3}\\ \left | BC \right | =\left | BG \right | + \left | GC \right | \\ 8=\left | CG \right |+2 r\sqrt{3}+ \left | CG \right |\Rightarrow \left | CG \right |=4 - r\sqrt{3}\\ \left | BG \right |=4 + r\sqrt{3}\\ \beta =\angle {GBO}=\angle {IBO} \\ \alpha=\angle {HCO}=\angle {OCG} \\ \alpha + \beta =30° \\ \tan\left ( \alpha \right ) = \frac{r}{4 - r \sqrt{3}}\\ \tan\left ( \beta \right ) = \frac{r}{4 + r \sqrt{3}} \\ \tan\left ( \alpha + \beta \right ) = \frac{\tan\left ( \alpha \right ) + \tan\left ( \beta \right ) }{ 1 -\tan\left ( \alpha \right ) \tan\left ( \beta \right ) } \\ \tan\left ( 30° \right ) = \frac{\frac{r}{4 - r \sqrt{3}} + \frac{r}{4 + r \sqrt{3}} }{ 1 -\frac{r}{4 - r \sqrt{3}} \cdot \frac{r}{4 + r \sqrt{3}} } \\ \frac{1}{\sqrt{3}} = \frac{8r}{16 - 4r^2}\Rightarrow r^2 + 2 \sqrt{3} r - 4 =0 \\ r = -\sqrt{3} \pm \sqrt{7} \\ r = \sqrt{7} - \sqrt{3}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...