3-5-7 square point

Geometry Level 5

Let A B C D ABCD be a square. P is a point inside the square such that A P = 3 , P B = 7 AP=3, PB=7 and P D = 5 PD=5 . Find the area of A B C D ABCD .


The answer is 58.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Discussions for this problem are now closed

Chew-Seong Cheong
Jan 15, 2015

Let the side length of the square A B C D ABCD be a a and A A be ( 0 , a ) (0,a) , B ( a , a ) B(a,a) , C ( a , 0 ) C(a,0) , D ( 0 , 0 ) D(0,0) and P ( x , y ) P(x,y) .

Then, we have:

{ P D 2 : x 2 + y 2 = 25 . . . ( 1 ) A P 2 : x 2 + ( a y ) 2 = 9 . . . ( 2 ) P B 2 : ( a x ) 2 + ( a y ) 2 = 49 . . . ( 3 ) \begin{cases} PD^2: x^2+y^2 = 25 &...(1)\\ AP^2: x^2+(a-y)^2 = 9 &...(2)\\ PB^2: (a-x)^2+(a-y)^2 = 49 &...(3) \end{cases}

{ E q . 1 E q . 2 : a 2 + 2 a y = 16 y = a 2 + 16 2 a E q . 3 E q . 2 : a 2 2 a x = 40 x = a 2 40 2 a \begin{cases} Eq.1-Eq.2: -a^2+2ay = 16 & y = \dfrac {a^2+16}{2a}\\ Eq.3-Eq.2: a^2-2ax = 40 & x = \dfrac {a^2-40}{2a} \end{cases}

Substituting x x and y y in E q . 1 Eq.1 :

( a 2 40 2 a ) 2 + ( a 2 + 16 2 a ) 2 = 25 a 4 74 a 2 + 928 = 0 \Rightarrow \left( \dfrac {a^2-40}{2a} \right)^2 + \left( \dfrac {a^2+16}{2a} \right)^2 = 25\quad \Rightarrow a^4-74a^2+928 = 0

a 2 = 74 ± 7 4 2 4 ( 928 ) 2 = 74 ± 42 2 = 58 \Rightarrow a^2 = \dfrac {74\pm \sqrt{74^2-4(928)}}{2} = \dfrac {74\pm 42}{2} = 58 \space or 16 \space 16 \space but a > 4 \space a > 4 .

Therefore, the area of A B C D = a 2 = 58 ABCD = a^2 = \boxed{58} .

Paola Ramírez
Jan 12, 2015

Let A Q B A P D \triangle AQB \cong \triangle APD the A Q = A P = 3 AQ=AP=3 and P A Q = 90 ° \angle PAQ=90° .

As A P Q \triangle APQ is isosceles A P Q = 45 ° \angle APQ=45°

Then by law of cosines proof that Q P B = 45 ° \angle QPB=45° so A P B = 90 ° \angle APB=90° . \ A P B \triangle APB is rectangle and A B AB is its hypotenuse, and A B C D ABCD area is A B 2 AB^2 A P 2 + P B 2 = 3 2 + 7 2 = A B 2 = 58 \therefore AP^2+PB^2=3^2+7^2=AB^2=\boxed{58}

How do you prove that angle QPB=45?

Guiseppi Butel - 6 years, 5 months ago

Have that P B = 7 , Q B = 5 PB=7,QB=5 and Q P = 3 2 QP=3\sqrt{2} (because Q A P \triangle QAP is rectangle).

We can use law of cosines

5 2 = ( 3 2 ) 2 + 7 2 2 ( 3 2 ) ( 7 ) cos Q P B 5^2=(3\sqrt{2})^{2}+7^{2}-2(3\sqrt{2})(7) \cos \angle QPB

25 = 18 + 49 2 ( 3 2 ) ( 7 ) cos Q P B 25=18+49-2(3\sqrt{2})(7) \cos \angle QPB

42 = 2 ( 3 2 ) ( 7 ) cos Q P B -42=-2(3\sqrt{2})(7) \cos \angle QPB

1 = 2 cos Q P B 1=\sqrt{2}\cos \angle QPB

Q P B = 45 ° \therefore \boxed{\angle QPB=45°}

Paola Ramírez - 6 years, 5 months ago

Thanks. I appreciate the explanation.

Guiseppi Butel - 6 years, 5 months ago

I will firstly label a few points of interest on the picture:

Let us call the angle O A B = θ \angle OAB = \theta , and thus since C A B = 9 0 \angle CAB = 90^ \circ , we find that angle O A C = 9 0 θ \angle OAC = 90^ \circ - \theta . Also, let l l be the size of the side of the square.

Firstly, applying the law of cosines on the triangle O A B \triangle{OAB} with respect to the side O B \overline{OB} will yield the following:

5 2 = 3 2 + l 2 2 3 l c o s ( θ ) 5^{2} = 3^{2} + l^{2} - 2*3*l*cos(\theta)

6 l c o s ( θ ) = l 2 16 6l*cos(\theta) = l^{2} - 16

c o s ( θ ) = l 2 16 6 l cos(\theta) = \frac{l^{2} - 16}{6l}

Now, applying the law of cosines on the triangle O A C \triangle{OAC} with respect to the side O C \overline{OC} will yield the following:

7 2 = 3 2 + l 2 2 3 l c o s ( 9 0 θ ) 7^{2} = 3^{2} + l^{2} - 2*3*l*cos(90^ \circ - \theta)

6 l c o s ( 9 0 θ ) = l 2 40 6l*cos(90^ \circ - \theta) = l^{2} - 40

c o s ( 9 0 θ ) = l 2 40 6 l cos(90^ \circ - \theta) = \frac{l^{2} - 40}{6l}

Thus, we can write:

s i n ( θ ) = l 2 40 6 l sin(\theta) = \frac{l^{2} - 40}{6l}

Now, applying the trigonometric identity s i n 2 ( θ ) + c o s 2 ( θ ) = 1 sin^{2}(\theta) + cos^{2}(\theta) = 1 , we will obtain:

l 4 32 l 2 + 256 36 l 2 + l 4 80 l 2 + 1600 36 l 2 = 1 \frac{l^{4} - 32l^{2} + 256}{36l^{2}} + \frac{l^{4} - 80l^{2} + 1600}{36l^{2}} = 1

2 l 4 148 l 2 + 1856 = 0 2l^{4} - 148l^{2} + 1856 = 0

l 4 74 l 2 + 928 = 0 l^{4} - 74l^{2} + 928 = 0

Completing the square:

l 4 74 l 2 + 1369 = 441 l^{4} - 74l^{2} + 1369 = 441

( l 2 37 ) 2 = 2 1 2 (l^{2} - 37)^{2} = 21^{2}

So, either l 2 37 = 21 l^{2} - 37 = 21 , which gives us l 2 = 58 l^{2} = 58 , or l 2 37 = 21 l^{2} - 37 = 21 , which gives us l 2 = 16 l^{2} = 16 . l 2 l^{2} cannot be equal to 16 16 because if it were, then l = 4 l = 4 , and this would imply that the triangle O A C \triangle{OAC} is degenerate since the triangle inequality wouldn't hold, given that 3 + 4 > 7 3 + 4 > 7 is false. Thus, l 2 = 58 l^{2} = 58 , which so happens to be the area of the square.

Applying Law of Cosines three times on triangles A P B \triangle APB , A P D \triangle APD and B P D BPD we get if we let A P = a AP=a , B P = b BP=b , D P = c DP=c and A B = L AB=L :

L 2 = b 2 + c 2 + ( 2 b c ) 2 ( b 2 + c 2 2 a 2 ) 2 2 L^2=\dfrac{b^2+c^2+\sqrt{(2bc)^2-(b^2+c^2-2a^2)^2}}{2}

Substitute the known values:

L 2 = b 2 + c 2 + ( 2 b c ) 2 ( b 2 + c 2 2 a 2 ) 2 2 L 2 = 7 2 + 5 2 + ( 2 7 5 ) 2 ( 7 2 + 5 2 2 3 2 ) 2 2 L 2 = 74 + 1764 2 L 2 = 58 L^2=\dfrac{b^2+c^2+\sqrt{(2bc)^2-(b^2+c^2-2a^2)^2}}{2} \\ L^2=\dfrac{7^2+5^2+\sqrt{(2\cdot 7\cdot 5)^2-(7^2+5^2-2\cdot 3^2)^2}}{2} \\ L^2=\dfrac{74+\sqrt{1764}}{2} \\ L^2=\boxed{58}

how you got first. how you applied cosine rule 3 times on triangles

Vijay Singh Nishad - 6 years, 5 months ago

He used cosine rule each for the three triangles and then formed a relation between them

Harshvir SINGH - 6 years, 5 months ago

Can u plz show which one is triangle APB, APD, BPD. In the ques there is nothing labelled

Harshvir SINGH - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...