Equilateral triangle and two congruent circles!

Geometry Level 3

In equilateral A B C \triangle{ABC} with side length a a , C S \overline{CS} and A T \overline{AT} are tangent to the two circles each with radius r r and A B \overline{AB} and B C \overline{BC} are tangent to the upper circle and A C \overline{AC} is tangent to the lower circle as shown above.

If r a = α β β \dfrac{r}{a} = \dfrac{\sqrt{\alpha} - \sqrt{\beta}}{\beta} , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rocco Dalto
May 30, 2021

B M C B O D 3 a 2 B D = a 2 r B D = 3 r \triangle{BMC} \sim \triangle{BOD} \implies \dfrac{\sqrt{3}a}{2\overline{BD}} = \dfrac{a}{2r} \implies \overline{BD} = \sqrt{3}r

D C = a 3 r = C E E O C D O C \implies \overline{DC} = a - \sqrt{3}r = \overline{CE} \implies \triangle{EOC} \cong \triangle{DOC} by s . a . s s.a.s

and vertical angles O P E Q P O E O P P O Q \angle{OPE} \cong \angle{QPO'} \implies \triangle{EOP} \cong \triangle{PO'Q} by a . a . s a.a.s

and C Q C M = a 2 C Q O C O M \overline{CQ} \cong \overline{CM} = \dfrac{a}{2} \implies \triangle{CQO'} \cong \triangle{CO'M} by s . a . s s.a.s

\implies

A B M C = 3 a 2 8 = A B O D + 2 A D O C A E O P + A P O Q + 2 A Q O C A_{\triangle{BMC}} = \dfrac{\sqrt{3}a^2}{8} = A_{\triangle{BOD}} + 2A_{\triangle{DOC}} - A_{\triangle{EOP}} + A_{\triangle{PO'Q}} + 2A_{\triangle{QO'C}}

= 3 2 r 2 + ( a 3 r ) r + a 2 r 3 a 2 = 12 a r 4 3 r 2 = \dfrac{\sqrt{3}}{2}r^2 + (a - \sqrt{3}r)r + \dfrac{a}{2}r \implies \sqrt{3}a^2 = 12ar - 4\sqrt{3}r^2 \implies

4 3 r 2 12 a r + 3 a 2 = 0 r = a 2 ( 3 ± 2 ) 4\sqrt{3}r^2 - 12ar + \sqrt{3}a^2 = 0 \implies r = \dfrac{a}{2}(\sqrt{3} \pm \sqrt{2}) and for

r = a 2 ( 3 + 2 ) a 3 r < 0 r = \dfrac{a}{2}(\sqrt{3} + \sqrt{2}) \implies a - \sqrt{3}r < 0 \therefore we choose r = a 2 ( 3 2 ) r = \dfrac{a}{2}(\sqrt{3} - \sqrt{2})

r a = 3 2 2 = α β β α + β = 5 \implies \dfrac{r}{a} = \dfrac{\sqrt{3} - \sqrt{2}}{2} = \dfrac{\sqrt{\alpha} - \sqrt{\beta}}{\beta} \implies \alpha + \beta = \boxed{5} .

Saya Suka
Jun 4, 2021

Let the equilateral triangle have a side of 2, and it's obvious in a glance that the height is 3r + 2s, with 2s the distance between the two incenters and s the distance between one of them to the intersection point of two pink lines.

s² – r² = [(2 – √3r) – (2 / 1)]² / 4
= (1 – √3r)² / 4
4s² = 7r² – 2√3r + 1

√3 = 3r + 2s
= 3r + √(7r² – 2√3r + 1)
7r² –2√3r + 1 = (√3 – 3r)²
= 9r² – 6√3r + 3
0 = 2r² – 4√3r + 2
= r² – 2√3r + 1
(r – √3)² = 2
r = √3 ± √2
3r < √3
r = √3 – √2
r / a = (√3 – √2) / 2
Answer = 3 + 2 = 5

Chew-Seong Cheong
May 30, 2021

Let the centers of the lower and upper circlers be O O and Q Q respectively, O M OM and Q N QN be perpendicular to A C AC and A B AB respectively, and T A C = S C A = θ \angle TAC = \angle SCA = \theta . Using the fact that the line joining a vertex and incenter bisects the vertex angle,

A N + N B = A B Q N cot T A B 2 + Q N cot 3 0 = A B r cot ( 3 0 θ 2 ) + r cot 3 0 = a Let t = tan θ 2 3 + t 1 3 t r + 3 r = a \begin{aligned} AN + NB & = AB \\ QN \cot \frac {\angle TAB}2 + QN \cot 30^\circ & = AB \\ r \cot \left(30^\circ - \frac \theta 2\right) + r \cot 30^\circ & = a & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac {\sqrt 3 + t}{1-\sqrt 3t}\cdot r + \sqrt 3 r & = a \end{aligned}

Similarly for A C AC , we have 2 r t = a \blue{\dfrac {2r}t = a} . Then

3 + t 1 3 t + 3 = 2 t 3 + t 1 3 t = 2 3 t t 2 t 2 4 3 t + 2 = 0 t 2 2 3 t + 1 = 0 t = 3 2 For θ < 9 0 \begin{aligned} \frac {\sqrt 3 + t}{1-\sqrt 3t}+ \sqrt 3 & = \frac 2t \\ \frac {\sqrt 3 + t}{1-\sqrt 3t} & = \frac {2-\sqrt 3 t}t \\ 2t^2 - 4\sqrt 3t + 2 & = 0 \\ t^2 - 2\sqrt 3t + 1 & = 0 \\ \implies t & = \sqrt 3 - \sqrt 2 & \small \blue{\text{For }\theta < 90^\circ} \end{aligned}

Since 2 r t = a \blue{\dfrac {2r}t = a} , r a = t 2 = 3 2 2 \implies \dfrac ra = \dfrac t2 = \dfrac {\sqrt 3-\sqrt 2}2 . The required answer α + β = 3 + 2 = 5 \alpha + \beta = 3+2 = \boxed 5 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...