Equilateral Triangle Problem #2

Geometry Level 3

Given an equilateral triangle ABC with its altitude AD. Draw a point M on BD. Draw ME, MF perpendicular to AB, AC, respectively. G is the midpoint of AM.

What kind of quadrilateral is GEDF?

Choose the best answer.

Square Normal Quadrilateral Parallelogram Rhombus Trapezoid Rectangle

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

From the figure, A D M = A E M = 90 ° A D M + A E M = 180 ° . A E M D is a cyclic quadrilateral. [ Sum of opposite angles of quadrilateral is 180 ° . ] 1 \text{From the figure, }\angle ADM = \angle AEM = 90\degree \Rightarrow \angle ADM + \angle AEM = 180\degree.\newline\Rightarrow AEMD \text{ is a cyclic quadrilateral. }\hspace{20pt}\text{[ Sum of opposite angles of quadrilateral is }180\degree.\text{]} \quad\dots \textbf{1}

Also, A D M = A F M = 90 ° angle subtended by A M at point D and F are equal. A M D F is a cyclic quadrilateral. 2 \text{Also, }\angle ADM = \angle AFM = 90\degree \Rightarrow \text{ angle subtended by }AM \text{ at point }D\text{ and }F \text{ are equal. }\newline\Rightarrow AMDF \text{ is a cyclic quadrilateral. }\quad\dots \textbf{2}

Using 1 and 2, we get A E M D F is a cyclic pentagon with one of the diameter of circumscribing circle A M . So, G is the centre of circumscribing cirlce. G E = G F = G D = radius Eq. 1 \text{Using } \textbf{1}\text{ and }\textbf{2,}\,\text{ we get } AEMDF \text{ is a cyclic pentagon with one of the diameter of circumscribing circle }AM.\newline\text{So, }G\text{ is the centre of circumscribing cirlce.}\newline\Rightarrow GE = GF = GD = \text{ radius } \quad\dots\textbf{Eq. 1}

E D is a chord of circumscribing circle E F D = E A D = 30 ° [ Angle subtended by chord in the same segment are equal ] Similarly, F D is a chord of circle F E D = F A D = 30 ° ED\text{ is a chord of circumscribing circle }\Rightarrow \angle EFD = \angle EAD = 30\degree\hspace{20pt}\text{[ Angle subtended by chord in the same segment are equal ]}\newline\text{Similarly, }FD\text{ is a chord of circle }\Rightarrow\angle FED = \angle FAD = 30\degree

Now, in E F D , E F D = F E D = 30 ° D E = D F [ Sides opposite to equal angles are equal ] Eq. 2 \text{Now, in }\triangle EFD,\,\angle EFD = \angle FED = 30\degree \newline\hspace{65pt}\Rightarrow DE = DF \hspace{10pt} \text{[ Sides opposite to equal angles are equal ]}\quad\dots\textbf{Eq. 2}

In quadrilateral A E D F , E D F = 180 ° E A F = 180 ° 60 ° = 120 ° . Eq. 3 \text{In quadrilateral }AEDF\text{, } \angle EDF = 180\degree - \angle EAF = 180\degree - 60\degree = 120\degree.\hspace{12pt}\dots\textbf{Eq. 3}

Using Eq. 1 , Eq. 2 and G D being the common side in G E D and G E D , G E D G F D . G D E = G D F = 60 ° Eq. 4 \text{Using }\textbf{Eq. 1},\,\textbf{Eq. 2}\text{ and }GD\text{ being the common side in }\triangle GED \text{ and }\triangle GED,\,\triangle GED\cong\triangle GFD. \newline\Rightarrow \angle GDE = \angle GDF = 60\degree\hspace{12pt}\dots\textbf{Eq. 4}

Using Eq. 1 and Eq. 4 , G E D = G F D = 60 ° Eq. 5 \text{Using }\textbf{Eq. 1}\text{ and }\textbf{Eq. 4},\newline \angle GED = \angle GFD = 60\degree\hspace{12pt}\dots\textbf{Eq. 5}

Using Eq. 4 and Eq. 5 we get, G E D and G D F are equilateral triangles. So, in quadrilateral G E D F all sides are equal. Hence it is a rhombus. \text{Using }\textbf{Eq. 4}\text{ and }\textbf{Eq. 5}\text{ we get, }\triangle GED\text{ and }\triangle GDF \text{ are equilateral triangles. }\newline\text{So, in quadrilateral }GEDF\text{ all sides are equal. Hence it is a rhombus.}

Can you suggest another solution that doesn't require cyclic polygon?

Tin Le - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...