Equivalent capacitance

The capacitance of a parallel plate capacitor with plate area A and separation d, is C in vacuum .The space between the plates is filled with two wedges of dielectric constant K 1 K_1 and K 2 K_2 respectively . Find the capacitance of the resulting capacitor in μ F \mu F

W h e r e A = 4 π d = 10 3 27 m K 1 = 5 K 2 = 2 4 π ϵ 0 = 1 9. ( 10 9 ) Where\quad \\ A=4\pi \quad ㎡\\ d=\frac { { 10 }^{ -3 } }{27 } \quad m\\ { K }_{ 1 }\quad =\quad 5\\ { K }_{ 2 }\quad =\quad 2\\ 4\pi { \epsilon }_{ 0 }=\frac { 1 }{ 9.{ (10 }^{ 9 }) }


The answer is 9.162907319.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

According to the figure The right vaccum place is filled by dielectric constant K 1 K_1 & the left above vaccum by dielectric constant K 2 K_2

Let us consider the capacitance of the slab whose width is 'b' & length 'dx & seperation 'y' be d C 1 dC_1 & the above slab whose separation is (d-y) be d C 2 dC_2 .

Now Area of the those two slabs is = b . d x b.dx

d C 1 = ϵ 0 A K 1 y \displaystyle \begin{aligned} dC_1 = \frac{\epsilon_0AK_1}{y} \end{aligned}

d C 2 = ϵ 0 A K 2 d y \displaystyle\begin{aligned} dC_2 = \frac{\epsilon_0AK_2}{d-y} \end{aligned}

Since they are connceted in series we have their equivalent capacitance dC \text{Since they are connceted in series we have their equivalent capacitance dC}

1 d C 1 + 1 d C 2 = 1 d C \displaystyle\frac{1}{dC_1} + \frac{1}{dC_2} = \frac{1}{dC}

1 d C = 1 ϵ 0 A ( y K 1 + d y K 2 ) \displaystyle\frac{1}{dC} = \frac{1}{\epsilon_0A}(\frac{y}{K_1} + \frac{d-y}{K_2})

1 d C = 1 ϵ 0 A K 1 K 2 ( d K 1 + y ( K 2 K 1 ) ) \displaystyle\frac{1}{dC} = \frac{1}{\epsilon_0AK_1K_2}(dK_1 + y(K_2-K_1))

d C = ϵ 0 A K 1 K 2 ( d K 1 + y ( K 2 K 1 ) ) \displaystyle dC = \frac{\epsilon_0AK_1K_2}{(dK_1 + y(K_2-K_1))}

So the entire capacitance over length ’l’ is given by : \text{So the entire capacitance over length 'l' is given by :}

C = 0 l ϵ 0 A K 1 K 2 ( d K 1 + y ( K 2 K 1 ) ) \displaystyle C = \int_{0}^{l} \frac{\epsilon_0AK_1K_2}{(dK_1 + y(K_2-K_1))}

We have from figure that A = b . d x A=b.dx & t a n θ = y x = d l y = x d l tan\theta = \frac{y}{x} = \frac{d}{l} \implies y = x\frac{d}{l}

C = 0 l ϵ 0 b K 1 K 2 ( d K 1 + x d l ( K 2 K 1 ) ) d x \displaystyle C = \int_{0}^{l} \frac{\epsilon_0bK_1K_2}{(dK_1 + x\frac{d}{l}(K_2-K_1))}dx

C = 0 l ϵ 0 b K 1 K 2 l d ( K 1 l + x ( K 2 K 1 ) ) d x \displaystyle C = \int_{0}^{l} \frac{\epsilon_0bK_1K_2l}{d(K_1l + x(K_2-K_1))}dx

C = ϵ 0 b K 1 K 2 l d 0 l 1 ( K 1 l + x ( K 2 K 1 ) ) d x \displaystyle C = \frac{\epsilon_0bK_1K_2l}{d} \int_{0}^{l}\frac{1}{(K_1l + x(K_2-K_1))}dx

C = ϵ 0 b K 1 K 2 l d 1 K 2 K 1 ( l o g K 1 l + x ( K 2 K 1 ) ) 0 l \displaystyle C = \frac{\epsilon_0bK_1K_2l}{d} \frac{1}{K_2-K_1}(log|K_1l + x(K_2-K_1)|)_{0}^{l}

C = ϵ 0 b K 1 K 2 l d 1 K 2 K 1 ( l o g K 2 K 1 ) \displaystyle C = \frac{\epsilon_0bK_1K_2l}{d} \frac{1}{K_2-K_1}(log|\frac{K_2}{K_1}|)

C = ϵ 0 b K 1 K 2 l d ( K 2 K 1 ) ( l o g K 2 K 1 ) \displaystyle C = \frac{\epsilon_0bK_1K_2l}{d(K_2-K_1)}(log|\frac{K_2}{K_1}|)

C = ϵ 0 A K 1 K 2 d ( K 2 K 1 ) ( l o g K 2 K 1 ) \displaystyle C = \frac{\epsilon_0AK_1K_2}{d(K_2-K_1)}(log|\frac{K_2}{K_1}|)

The final capacitance is C & putting values thus provided we derive C = 9.163 \text{The final capacitance is C \& putting values thus provided we derive } \boxed{\color{#624F41}{\mathbf{C=9.163}}}

Great work

Deepa Pathak - 3 years ago

Log in to reply

diagram is complex

pranjal bhardwaj - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...