Equivalent Quadrilaterals

Geometry Level pending

A square has a whole area equal to a rectangle. The perimeter of said rectangle is 58 cm.

What is the square's side in centimeters?

Assume that the rectangle has integer-valued side lengths.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Nov 26, 2016

a 2 = x y 2 ( x + y ) = 58 x + y = 29 x y = a 2 x < 29 , y l e 29 x = 1 , 2 , 3 , 4 , 5 , 6 , , 28 ; y = 1 , 2 , 3 , 4 , 5 , 6 , , 29 x y = a 2 ie, a perfect square The possible value of (x, y) for (x+y)=29 is : ( 1 , 28 ) , ( 2 , 27 ) , ( 3 , 26 ) , ( 4 , 25 ) , , ( 14 , 15 ) The only solution for (x, y), where xy is a perfect square is (4, 25). Area of square = rectangle = 4 × 25 = 100 side of square = 100 = 10 c m a^2 = xy \\ 2(x+y) = 58\\ x+y=29 \\ xy = a^2 \\ x < 29, y le 29 \\ x = 1, 2, 3, 4, 5, 6, \ldots, 28 ~~ ; ~~ y = 1, 2, 3, 4, 5, 6, \ldots, 29\\ xy = a^2 ~~ \text{ie, a perfect square} \\ \implies \text{The possible value of (x, y) for (x+y)=29 is : } \\ (1, 28), (2, 27), (3, 26), (4, 25), \ldots, (14, 15)\\ \text{The only solution for (x, y), where xy is a perfect square is (4, 25).} \\ \boxed{\therefore \text{Area of square = rectangle = }4 \times 25 = 100 \\ \implies \text{side of square = } \sqrt[]{100} = 10cm}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...