Erf?

Calculus Level 5

0 e 2 x 5 + x d x = π a e a b ( 1 erf ( a b ) ) \displaystyle{\large{\int^{\infty}_{0} \dfrac{e^{-2x}}{\sqrt{5+x}} \ dx = \sqrt{\dfrac{\pi}{a}}e^{ab}(1-\text{erf}(\sqrt{ab}))}}

where a , b a,b R + 0 \in \mathbb R^{+} \neq 0 .

Calculate a + b + 2 a b 3 \dfrac{a+b+2ab}{3}

Notations: erf ( ) \text{erf }(\cdot) denotes the error function .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Aug 27, 2017

I = e 2 x x + 5 d x Let u = x + 5 d x = 2 x + 5 d u = 2 e 10 e 2 u 2 d u Let v = u 2 d u = 1 2 d v = 2 e 10 2 3 2 2 e v 2 d v = e 10 π 2 2 e v 2 π d v where 2 e v 2 π d v = erf( v ) = lim b π 2 e 10 erf ( v ) 0 b = lim b π 2 e 10 erf ( u 2 ) 0 b = lim b π 2 e 10 erf ( 2 x + 5 ) 0 b erf ( ) = 1 = π 2 e 10 ( 1 erf ( 10 ) ) \displaystyle \begin{aligned} I & = \int \frac{e^{-2x}}{\sqrt{x+5}} \ dx & \small \color{#3D99F6} \text{Let } u = \sqrt{x + 5} \implies dx = 2\sqrt{x+5} \ du \\ & = 2e^{10} \int e^{-2u^2} \ du & \small \color{#3D99F6} \text{Let } v = u\sqrt{2} \implies du = \frac{1}{\sqrt{2}} \ dv \\ & = \frac{2e^{10}}{2^{\frac 32}} \int 2e^{-v^2} \ dv \\ & = \frac{e^{10}\sqrt{\pi}}{\sqrt{2}} \int \frac{2e^{-v^2}}{\sqrt{\pi}} \ dv & \small \color{#3D99F6} \text{where} \int \frac{2e^{-v^2}}{\sqrt{\pi}} \ dv = \text{erf(}v\text{)} \\ & = \lim_{b \to \infty} \left. \sqrt{\frac{\pi}{2}}e^{10} \text{erf}(v) \ \right |_0^b \\ & = \lim_{b \to \infty} \left. \sqrt{\frac{\pi}{2}}e^{10}\text{erf}\left(u\sqrt{2}\right) \ \right|_0^b \\ & = \lim_{b \to \infty} \left. \sqrt{\frac{\pi}{2}}e^{10}\text{erf}\left(\sqrt{2}\sqrt{x+5}\right) \ \right|_0^b & \small \color{#3D99F6} \text{erf}\left(\infty\right) = 1 \\ & = \sqrt{\frac{\pi}{2}}e^{10}\left(1 - \text{ erf}\left(\sqrt{10}\right)\right) \end{aligned}

a = 2 , b = 5 a + b + 2 a b 3 = 9 \implies a = 2, b = 5 \implies \dfrac{a + b + 2ab}{3} = \boxed{9}

Wouldnt that be efrc ( v ) = 1 erf ( v ) \text{efrc}(v) = 1 - \text{erf}(v) ?

Md Zuhair - 3 years, 9 months ago

I = e 2 x x + 5 d x L e t t 2 = 2 x + 5 2 x = t 2 10. x + 5 = t 2 , a n d d x = t . d t I = 2 e t 2 e 10 t t . d t I = 2 e 10 e t 2 d t B u t e r f ( t ) = 2 e t 2 π d t \displaystyle I ~ =~ \int \frac{e^{-2x}}{\sqrt{x+5}} \ dx\\ \color{#3D99F6} {Let ~t^2 = 2*{x + 5}}~~ ~~~~~\implies~~~2x=t^2-10.~~~~~~~~\sqrt{x+5}=\dfrac t {\sqrt2},~~~and~~~dx=t.dt \\ \displaystyle \therefore~~I ~= ~\int \frac{\sqrt2*e^{-t^2}*e^{10} } t t.dt\\ \displaystyle~I~ = \sqrt2*e^{10} \int e^{-t^2}dt ~~~~~~\color{#3D99F6} {But~~erf(t)~=~ \int \dfrac {2* e^{-t^2}}{\sqrt{\pi}}dt }\\ I = e 10 π 2 e r f ( t ) . e r f ( t ) 0 = lim b e r f ( t ) 0 b = 1 e r f ( 2 5 ) . e r f ( ) = 1. t = 2 ( x + 5 ) 0 e 2 x x + 5 d x = e 2 5 π 2 ( 1 e r f ( 2 5 ) ) = e a b π a ( 1 e r f ( a b ) ) a + b + 2 a b 3 = 2 + 5 + 2 2 5 3 = 9 \displaystyle \therefore~~I ~= ~ e^{10}* \sqrt{\dfrac {\pi} 2}* erf(t).\\ erf(t) |_0 ^\infty = \lim_{b \to \infty} erf(t) |_0 ^b~=1-erf(\sqrt{2* 5}).~~~~~~~~~~~~\color{#3D99F6} {\because~erf(\infty)=1.~~~~~t=\sqrt{2*(x+5)}}\\ \displaystyle \therefore ~~\int_0^{\infty} \frac{e^{-2x}}{\sqrt{x+5}} \ dx\\ = e^{2*5}*\sqrt{\dfrac {\pi} 2}*( 1-erf(\sqrt{2* 5}))\\ = e^{a*b}*\sqrt{\dfrac {\pi} a} *( 1-erf(\sqrt{a* b}) ) \\ \therefore~\dfrac{a+b+2*a*b} 3~=~\dfrac{2+5+2*2*5} 3 =\Large \color{#D61F06}{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...