Eric's binomial sum

What are the last 3 digits of k = 1 10 ( 30 3 k ) \sum_{k=1}^{10} \binom{30}{3k} ?

This problem is posed by Eric E .


The answer is 941.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kishlaya Jaiswal
Dec 28, 2013

Instead of finding out the value of k = 1 10 ( 30 3 k ) \sum_{k=1}^{10} {30\choose 3k} , we'll derive a general expression which can be easily done using the roots of unity.

By Binomial Theorem, we already have ( 1 + x ) n = ( n 0 ) + ( n 1 ) x + ( n 2 ) x 2 + + ( n n ) x n (1+x)^n = {n\choose 0} + {n\choose 1}x + {n\choose 2}x^2+\ldots + {n\choose n}x^n

Now, first we see that the in the expression k = 1 10 ( 30 3 k ) = ( 30 3 ) + ( 30 6 ) + \sum_{k=1}^{10} {30\choose 3k} = {30\choose 3}+{30\choose 6}+\ldots we have the r r (of ( n r ) {n\choose r} ) at gaps of 3 3 . That suggests us to use the cube root of unity ω \omega .

We'll use the property that 1 + ω + ω 2 = 0 1+\omega+\omega^2 = 0 and ω 3 = 1 \omega^3=1

So now we plug 1 1 , ω \omega and ω 2 \omega^2 in ( 1 + x ) n (1+x)^n successively to get -

( 1 + 1 ) n = 2 n = ( n 0 ) + ( n 1 ) + ( n 2 ) + + ( n n ) (1+1)^n = 2^n = {n\choose 0} + {n\choose 1} + {n\choose 2}+\ldots + {n\choose n}

( 1 + ω ) n = ( ω 2 ) n = ( n 0 ) + ( n 1 ) ω + ( n 2 ) ω 2 + + ( n n ) ω n (1+ \omega)^n = (-\omega^2)^n = {n\choose 0} + {n\choose 1} \omega + {n\choose 2} \omega^2+\ldots + {n\choose n} \omega^n

( 1 + ω 2 ) n = ( ω ) n = ( n 0 ) + ( n 1 ) ω 2 + ( n 2 ) ω 4 + + ( n n ) ω 2 n (1+\omega^2)^n = (-\omega)^n = {n\choose 0} + {n\choose 1}\omega^2 + {n\choose 2}\omega^4+\ldots + {n\choose n}\omega^{2n}

Now, add these tree expressions to get the desired result -

( 2 n + ( ω ) n + ( ω 2 ) n ) = 3 ( ( n 0 ) + ( n 1 ) ( 1 + ω + ω 2 ) + ( n 2 ) ( 1 + ω + ω 2 ) + + ( n n ) ( 1 + ω + ω 2 ) ) (2^n + (-\omega)^n + (-\omega^2)^n) = 3({n\choose 0} + {n\choose 1}(1+\omega+\omega^2) + {n\choose 2}(1+\omega+\omega^2)+\ldots + {n\choose n}(1+\omega+\omega^2))

= 3 ( ( n 0 ) + ( n 3 ) + ( n 6 ) + ) = 3({n\choose 0} + {n\choose 3} + {n\choose 6} + \ldots)

Hence,

( n 3 ) + ( n 6 ) + = ( 2 n + ( ω ) n + ( ω 2 ) n ) 3 ( n 0 ) {n\choose 3} + {n\choose 6} + \ldots = \frac{(2^n + (-\omega)^n + (-\omega^2)^n)}{3} - {n\choose 0}

Thus for n = 30 n=30 (as asked in problem), we get -

k = 1 10 ( 30 3 k ) = ( 2 30 + ( ω ) 30 + ( ω 2 ) 30 ) 3 1 \sum_{k=1}^{10} {30\choose 3k} = \frac{(2^{30} + (-\omega)^{30} + (-\omega^2)^{30})}{3} - 1

= 1073741824 + ω 30 + ω 60 3 1 = 1073741824 + 1 + 1 3 1 = 357913941 = \frac{1073741824 + \omega^{30} + \omega^{60}}{3} - 1 = \frac{1073741824+1+1}{3} - 1 = 357913941

whose last three digits are 941 \boxed{941}

(Note: here we had gaps of three so we used cube rots of unity, infact if we had binomial coeffeicients at gaps of n, then we had used nth roots of unity to get the result)

Great solution! Thanks!

Ajay Maity - 7 years, 5 months ago

Great solution.

Soham Dibyachintan - 7 years, 5 months ago

'Brilliant' solution.Exactly how I thought!

Akshit Kumar - 7 years, 5 months ago

Akshit Kumar, Soham Dibyachintan, Ajay Maity - Thanks

Kishlaya Jaiswal - 7 years, 5 months ago

Can't we use Hockey-Stick Formula?

Klahrinz William Catubig - 7 years, 5 months ago

Log in to reply

what's that sir ?

Priyansh Saxena - 7 years, 4 months ago

Log in to reply

This link explains it better than I could.

http://euclid.ucc.ie/pages/MATHENR/Exercises/CombinatoricsInductionSums.pdf Page 12

Klahrinz William Catubig - 7 years, 4 months ago

brilliant

samiran baroi - 7 years, 4 months ago

nice job, nobody's gonna calculate that all the way down the wire. I used the same trick !!!!!

Priyansh Saxena - 7 years, 4 months ago

wow! Got to know a fantastic property

Akhilesh Prasad - 6 years, 8 months ago

brlliant.... salute boss

Ahsanul Habib - 7 years, 5 months ago
William Zhang
Dec 28, 2013

Plug this into Python:

 def fact(n):

     a=1

     b=0

     for i in range(n):

         a=a*(b+1)

         b=b+1

     return a

 def choose(m):

     return (fact(30)/(fact(m)*fact(30-m)))

 s=0

 for i in range(3, 31, 3):

     s=s+choose(i)

 print(s)

This is a mathematics question and not computer science.

Soham Dibyachintan - 7 years, 5 months ago

:P trolled

Sagnik Saha - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...