Erratic Systematic Wormhole Variance

Chaos has emerged in a 1 × 1 1\times1 field; The fabric of space will never be healed.
The limits of light have been replaced: All matter is teleported to a random place!
What is the variance of the displacement of the points?

Give your answer to 3 significant figures.

This rule of space should not be disregarded: You might teleport to exactly where you started.


You might want to try Finding the expected value first.

I thank Deeparaj Bhat and Bobbym None for helping me solve this.


The answer is 0.061488775.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Christopher Boo
Jul 20, 2016

It is known that the average distance,

x = 0 1 0 1 0 1 0 1 ( x y ) 2 + ( z w ) 2 d x d y d z d w = 1 15 ( 2 + 2 + 5 ln ( 1 + 2 ) ) \overline{x} = \int_0^1 \int_0^1 \int_0^1 \int_0^1 \sqrt{(x-y)^2+(z-w)^2} \text{ d}x\text{ d}y\text{ d}z\text{ d}w=\frac{1}{15} (2+\sqrt{2}+5\ln(1+\sqrt{2}))

The variance, is

σ 2 = 0 1 0 1 0 1 0 1 ( ( x y ) 2 + ( z w ) 2 x ) 2 d x d y d z d w = 0 1 0 1 0 1 0 1 ( x y ) 2 + ( z w ) 2 2 x ( x y ) 2 + ( z w ) 2 + x 2 d x d y d z d w = 0 1 0 1 0 1 0 1 ( x y ) 2 + ( z w ) 2 d x d y d z d w 2 x 0 1 0 1 0 1 0 1 ( x y ) 2 + ( z w ) 2 d x d y d z d w + x 2 = 1 3 2 x 0 1 0 1 0 1 0 1 ( x y ) 2 + ( z w ) 2 d x d y d z d w + x 2 = 1 3 2 x 2 + x 2 = 1 3 x 2 = 1 3 1 225 ( 2 + 2 + 5 ln ( 1 + 2 ) ) 2 = 75 ( 2 + 2 + 5 ln ( 1 + 2 ) ) 2 225 0.061469707 \begin{aligned} \sigma ^2 &= \int_0^1 \int_0^1 \int_0^1 \int_0^1 (\sqrt{(x-y)^2+(z-w)^2} - \overline{x} )^2 \text{ d}x\text{ d}y\text{ d}z\text{ d}w \\ &= \int_0^1 \int_0^1 \int_0^1 \int_0 ^1 (x-y)^2+(z-w)^2 -2\overline{x} \sqrt{(x-y)^2+(z-w)^2} + \overline{x} ^2 \text{ d}x\text{ d}y\text{ d}z\text{ d}w \\ &= \int_0^1 \int_0^1 \int_0^1 \int_0 ^1 (x-y)^2+(z-w)^2 \text{ d}x\text{ d}y\text{ d}z\text{ d}w -2\overline{x} \int_0^1 \int_0^1 \int_0^1 \int_0 ^1 \sqrt{(x-y)^2+(z-w)^2} \text{ d}x\text{ d}y\text{ d}z\text{ d}w + \overline{x} ^2 \\ &= \frac{1}{3} -2\overline{x} \int_0^1 \int_0^1 \int_0^1 \int_0^1 \sqrt{(x-y)^2+(z-w)^2} \text{ d}x\text{ d}y\text{ d}z\text{ d}w + \overline{x} ^2 \\ &= \frac{1}{3} -2\overline{x} ^2+\overline{x} ^2\\ &= \frac{1}{3} - \overline{x} ^2 \\ &= \frac{1}{3} - \frac{1}{225} (2+\sqrt{2}+5\ln(1+\sqrt{2}))^2 \\ &= \frac{75-(2+\sqrt{2}+5\ln(1+\sqrt{2}))^2}{225} \\ & \approx 0.061469707 \\ \end{aligned}

Julian Poon
Jul 17, 2016

Say the particle's initial position is (a,b) and the particle's final position is (x,y).

The displacement of the particle would be

( x a ) 2 + ( y b ) 2 \sqrt{\left(x-a\right)^2+\left(y-b\right)^2}

Since we want to find the variance, we need to first find the average over all possible a, b, x, y:

x = All cases No. of cases = 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 ( x a ) 2 + ( y b ) 2 d y d x d a d b = 0.521405433309 \overline { x } =\frac { \sum\text{All cases} }{ \text{No. of cases} } = \frac{1}{1}\int _0^1\frac{1}{1}\int _0^1\frac{1}{1}\int _0^1\frac{1}{1}\int _0^1\sqrt{\left(x-a\right)^2+\left(y-b\right)^2}\, dy \, dx \, da \, db = 0.521405433309

Note that numerical methods were used to calculate the integrals.

Now to find the variance:

s 2 = ( All cases x ) 2 No. of cases = 0 1 0 1 0 1 0 1 ( ( x a ) 2 + ( y b ) 2 x ) 2 d y d x d a d b = 0.061469707449 s^2=\frac{\sum(\text{All cases}-\overline{x})^2}{\text{No. of cases}}=\int _0^1\int _0^1\int _0^1\int _0^1\left(\sqrt{\left(x-a\right)^2+\left(y-b\right)^2}-\overline{x}\right)^2 \, dy \, dx \, da \, db=0.061469707449

Interesting fact: If the question asks for the root mean square, the answer would be exactly 1 / 3 1/\sqrt{3} . Also this problem actually has a closed form

What numerical method would you recommend for doing the integral?

Agnishom Chattopadhyay - 4 years, 11 months ago

Log in to reply

I'm rather bad at coding so I just used Desmos to integrate, which uses Riemann sums to approximate.

Julian Poon - 4 years, 11 months ago

Log in to reply

I see. I solved this problem with Monte Carlo methods.

Agnishom Chattopadhyay - 4 years, 11 months ago
Steven Chase
Jun 23, 2018

Monte Carlo code

import math
import random

u = 0.521 # from previous problem

for z in range(0,10):  # run experiment 10 times

    N = 10**7   # 10 million points - Monte Carlo

    Dsqav = 0.0

    for j in range(0,N):

        x1 = random.uniform(0.0,1.0)
        y1 = random.uniform(0.0,1.0)

        x2 = random.uniform(0.0,1.0)
        y2 = random.uniform(0.0,1.0)

        Dsq = (x1-x2)**2.0 + (y1-y2)**2.0

        Dsqav = Dsqav + Dsq

    EDsq = Dsqav / N

    print EDsq,(EDsq - u**2.0)  # Var = EDsq - u**2.0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...