Error 404 Followers: Sine Squared with a Tinge of Progressions, anyone?

Geometry Level 3

sin 2 ( 1 ) + sin 2 ( 2 ) + + sin 2 ( 35 9 ) + sin 2 ( 36 0 ) = ? \large \sin^2(1^\circ)+\sin^2(2^\circ)+\ldots+\sin^2(359^\circ)+\sin^2(360^\circ) = \ ?


The answer is 180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
May 31, 2015

The sum of 1-90 degrees of sin 2 \sin^2 is,

sin 2 1 + sin 2 2 + + sin 2 4 5 + + sin 2 8 8 + sin 2 8 9 + sin 2 9 0 \sin^2{1^{\circ}}+\sin^2{2^{\circ}}+\ldots+\sin^2{45^{\circ}}+\ldots+\sin^2{88^{\circ}}+\sin^2{89^{\circ}}+\sin^2{90^{\circ}}

but sin 2 9 0 = 1 \sin^2{90^{\circ}}=1 and sin 2 4 5 = 0.5 \sin^2{45^{\circ}}=0.5 that is,

sin 2 1 + sin 2 2 + + 0.5 + + sin 2 8 8 + sin 2 8 9 + 1 \sin^2{1^{\circ}}+\sin^2{2^{\circ}}+\ldots+0.5+\ldots+\sin^2{88^{\circ}}+\sin^2{89^{\circ}}+1

= 1 + 0.5 + [ ( sin 2 1 + sin 2 8 9 ) + ( sin 2 2 + sin 2 8 8 ) + + ( sin 2 4 4 + sin 2 4 6 ) ] 44 groups =1+0.5+\underbrace{[(\sin^2{1^{\circ}}+\sin^2{89^{\circ}})+(\sin^2{2^{\circ}}+\sin^2{88^{\circ}})+\ldots+(\sin^2{44^{\circ}}+\sin^2{46^{\circ}})]}_\text{44 groups}

= 1.5 + ( 1 + 1 + 1 + ) 44 numbers = 1.5 + ( 44 × 1 ) = 45.5 =1.5+\underbrace{(1+1+1+\ldots)}_\text{44 numbers}=1.5+(44\times 1)=45.5

The sum of 91-180 degrees of sin 2 \sin^2 is,

sin 2 9 1 + sin 2 9 2 + + sin 2 13 5 + + sin 2 17 8 + sin 2 17 9 + sin 2 18 0 \sin^2{91^{\circ}}+\sin^2{92^{\circ}}+\ldots+\sin^2{135^{\circ}}+\ldots+\sin^2{178^{\circ}}+\sin^2{179^{\circ}}+\sin^2{180^{\circ}}

but sin 2 18 0 = 0 \sin^2{180^{\circ}}=0 and sin 2 13 5 = sin 2 4 5 = 0.5 \sin^2{135^{\circ}}=\sin^2{45^{\circ}}=0.5 that is,

sin 2 9 1 + sin 2 9 2 + + 0.5 + + sin 2 17 8 + sin 2 17 9 \sin^2{91^{\circ}}+\sin^2{92^{\circ}}+\ldots+0.5+\ldots+\sin^2{178^{\circ}}+\sin^2{179^{\circ}}

= sin 2 8 9 + sin 2 8 8 + + 0.5 + + sin 2 2 + sin 2 1 =\sin^2{89^{\circ}}+\sin^2{88^{\circ}}+\ldots+0.5+\ldots+\sin^2{2^{\circ}}+\sin^2{1^{\circ}}

= 0.5 + [ ( sin 2 8 9 + sin 2 1 ) + ( sin 2 8 8 + sin 2 2 ) + + ( sin 2 4 6 + sin 2 4 4 ) ] 44 groups =0.5+\underbrace{[(\sin^2{89^{\circ}}+\sin^2{1^{\circ}})+(\sin^2{88^{\circ}}+\sin^2{2^{\circ}})+\ldots+(\sin^2{46^{\circ}}+\sin^2{44^{\circ}})]}_\text{44 groups}

= 0.5 + ( 1 + 1 + 1 + ) 44 numbers = 0.5 + ( 44 × 1 ) = 44.5 =0.5+\underbrace{(1+1+1+\ldots)}_\text{44 numbers}=0.5+(44\times 1)=44.5

The sum of 181-270 degrees of sin 2 \sin^2 is,

sin 2 18 1 + sin 2 18 2 + + sin 2 22 5 + + sin 2 26 8 + sin 2 26 9 + sin 2 27 0 \sin^2{181^{\circ}}+\sin^2{182^{\circ}}+\ldots+\sin^2{225^{\circ}}+\ldots+\sin^2{268^{\circ}}+\sin^2{269^{\circ}}+\sin^2{270^{\circ}}

but sin 2 27 0 = sin 2 9 0 = 1 \sin^2{270^{\circ}}=\sin^2{90^{\circ}}=1 and sin 2 22 5 = sin 2 4 5 = 0.5 \sin^2{225^{\circ}}=\sin^2{45^{\circ}}=0.5 that is,

sin 2 18 1 + sin 2 18 2 + + 0.5 + + sin 2 26 8 + sin 2 26 9 + 1 \sin^2{181^{\circ}}+\sin^2{182^{\circ}}+\ldots+0.5+\ldots+\sin^2{268^{\circ}}+\sin^2{269^{\circ}}+1

= sin 2 1 + sin 2 2 + + 0.5 + + sin 2 8 8 + sin 2 8 9 + 1 = 45.5 =\sin^2{1^{\circ}}+\sin^2{2^{\circ}}+\ldots+0.5+\ldots+\sin^2{88^{\circ}}+\sin^2{89^{\circ}}+1=45.5

The sum of 271-360 degrees of sin 2 \sin^2 is,

sin 2 27 1 + sin 2 27 2 + + sin 2 31 5 + + sin 2 35 8 + sin 2 35 9 + sin 2 36 0 \sin^2{271^{\circ}}+\sin^2{272^{\circ}}+\ldots+\sin^2{315^{\circ}}+\ldots+\sin^2{358^{\circ}}+\sin^2{359^{\circ}}+\sin^2{360^{\circ}}

but sin 2 36 0 = sin 2 18 0 = 0 \sin^2{360^{\circ}}=\sin^2{180^{\circ}}=0 and sin 2 31 5 = sin 2 4 5 = 0.5 \sin^2{315^{\circ}}=\sin^2{45^{\circ}}=0.5 that is,

sin 2 27 1 + sin 2 27 2 + + 0.5 + + sin 2 35 8 + sin 2 35 9 \sin^2{271^{\circ}}+\sin^2{272^{\circ}}+\ldots+0.5+\ldots+\sin^2{358^{\circ}}+\sin^2{359^{\circ}}

= sin 2 8 9 + sin 2 8 8 + + 0.5 + + sin 2 2 + sin 2 1 = 44.5 =\sin^2{89^{\circ}}+\sin^2{88^{\circ}}+\ldots+0.5+\ldots+\sin^2{2^{\circ}}+\sin^2{1^{\circ}}=44.5

Hence, the sum of 1-360 degrees of sin 2 \sin^2 is, 45.5 + 44.5 + 45.5 + 44.5 = 90 + 90 = 180 45.5+44.5+45.5+44.5=90+90=\boxed{180}

Ayush Maheshwari
Jun 1, 2015

There's a better solution;

Convert in the form of cosines using half angle; using sin^2(x) = (1-cos(2x))/2

( 1-cos(2) ) /2+ ( 1-cos(4) ) /2+ ( 1-cos(6) ) /2+ ..........+( 1-cos(720) ) /2

bow use the formulae ; cos( a) + cos(a+b) + cos(a +2b) +.....+ cos(a +(n-1)b ) = (sin(nb/2) cos(a +((n-1)*b)/2))) /sin (b/2)

it will be equal to zero and the remaining (1/2) (s) will add upto 180

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...