Error Function Integration

Calculus Level 4

Evaluate: 0 ( 1 erf ( x ) ) d x \large \int_0^\infty\left(1-\text{erf}(x)\right)\ dx

Notation: erf ( x ) = 2 π 0 x e t 2 d t \displaystyle\text{erf}(x)=\frac2{\sqrt\pi} \int_0^x e^{-t^2}dt denotes the error function .


The answer is 0.56418958.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 27, 2018

I = 0 ( 1 erf ( x ) ) d x Complimentary error function erfc ( z ) = 1 erf ( z ) = 0 erfc ( x ) d x erfc ( z ) = 2 π z e t 2 d t = x erf ( x ) 0 0 2 x e x 2 π d x By integration by parts = lim x erf ( x ) 1 x 0 e x 2 π 0 A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 2 e x 2 π 1 x 2 0 0 + 1 π Differentiate up and down w.r.t. x = 0 + 1 π 0.564 \begin{aligned} I & = \int_0^\infty (1-\text{erf}(x)) \ dx & \small \color{#3D99F6} \text{Complimentary error function erfc}(z) = 1 - \text{erf}(z) \\ & = \int_0^\infty \text{erfc}(x) \ dx & \small \color{#3D99F6} \text{erfc}(z) = \frac 2{\sqrt \pi} \int_z^\infty e^{-t^2} dt \\ & = x\text{ erf}(x) \ \bigg|_0^\infty - \int_0^\infty \frac {2xe^{-x^2}}{\sqrt \pi} dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = {\color{#3D99F6}\lim_{x\to \infty} \frac {\text{erf}(x)}{\frac 1x}} - 0 - \frac {e^{-x^2}}{\sqrt \pi} \ \bigg|_0^\infty & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = {\color{#3D99F6}\lim_{x\to \infty} \frac {\frac {2e^{-x^2}}{\sqrt \pi}}{-\frac 1{x^2}}} - 0 - 0 + \frac 1{\sqrt \pi} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = {\color{#3D99F6}0} + \frac 1{\sqrt \pi} \approx \boxed{0.564} \end{aligned}

Brian Moehring
Sep 30, 2018

Note that 1 erf ( x ) = 2 π 0 e t 2 d t 2 π 0 x e t 2 d t = 2 π x e t 2 d t \begin{aligned} 1 - \text{erf}(x) &= \frac{2}{\sqrt{\pi}}\int_0^\infty e^{-t^2}\,dt - \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}\,dt \\ &= \frac{2}{\sqrt{\pi}}\int_x^\infty e^{-t^2}\,dt \end{aligned} so that 0 ( 1 erf ( x ) ) d x = 0 2 π x e t 2 d t d x = 2 π 0 0 t e t 2 d x d t = 2 π 0 t e t 2 d t = 2 π 0 1 2 e u d u = 1 π [ e u 0 = 1 π 0.56419 \begin{aligned} \int_0^\infty \Big(1 - \text{erf}(x)\Big)\,dx &= \int_0^\infty \frac{2}{\sqrt{\pi}}\int_x^\infty e^{-t^2}\,dt \,dx \\ &= \frac{2}{\sqrt{\pi}} \int_0^\infty \int_0^t e^{-t^2}\,dx\,dt \\ &= \frac{2}{\sqrt{\pi}} \int_0^\infty t e^{-t^2}\,dt \\ &= \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{1}{2} e^{-u}\,du \\ &= \frac{1}{\sqrt{\pi}} \left[-e^{-u}\right|_0^\infty \\ &= \frac{1}{\sqrt{\pi}} \approx \boxed{0.56419} \end{aligned}

In the second line how did you intertwine dx and dt?

Younes Bouhafid - 2 years, 8 months ago

Log in to reply

I changed the order of integration.

First note that the integrand e t 2 e^{-t^2} is never negative, which means we can change the order of integration (for those interested, this is a sufficient, not a necessary, condition).

Then to find the new limits, note that the iterated integral 0 x e t 2 d t d x \int_0^\infty \int_x^\infty e^{-t^2}\,dt\,dx corresponds to integrating over the region 0 x t < 0 \leq x \leq t < \infty in the x t xt -plane. Using this inequality, we can see the limits on x x are x = 0 x=0 and x = t x=t , giving 0 0 t e t 2 d x d t \int_0^\infty \int_0^t e^{-t^2}\,dx\,dt as an equivalent iterated integral.

Brian Moehring - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...