Reducing The Exposure

Geometry Level 3

Let A B C D ABCD be a rectangle such that A B = 3 A D AB= 3 AD . If E E and F F are on C D CD with C E = E F = F D CE = EF = FD , find cot ( C A E ) \cot (\angle CAE) .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Anshul Sanghi
Nov 7, 2016

Let C A D = P , E A D = Q \angle CAD = P, \angle EAD = Q , then cot ( C A E ) = cot ( α ) = cot ( P Q ) \cot(\angle CAE) = \cot(\alpha) = \cot(P-Q) .

Let A D = k AD = k , then D F = F E + E C = A D = k DF=FE+EC=AD = k .

So, tan ( P ) = D C A D = k + k + k k = 3 \tan( P) = \dfrac{DC}{AD} = \dfrac{k+k+k}{k} = 3 , and tan ( Q ) = D E A D = k + k k = 2 \tan (Q) = \dfrac{DE}{AD} = \dfrac{k + k}{k} = 2 .

Using the difference formula ,, tan ( P Q ) = tan P tan Q 1 + tan P tan Q = 3 2 1 + 3 2 = 1 7 \tan(P-Q) = \dfrac{\tan P - \tan Q}{1+ \tan P \tan Q} = \dfrac{3 - 2}{1 + 3 \cdot 2} = \dfrac17 .

Hence, cot ( P Q ) = 1 tan ( P Q ) = 7 \cot(P - Q) = \dfrac1{\tan (P-Q)} = \boxed 7 .

Good usage of the tangent difference formula to calculate the expression :)

Calvin Lin Staff - 4 years, 7 months ago
Jason Dyer Staff
Nov 8, 2016

Assume without loss of generality A D AD is 1. Then D C DC is 3, and E C EC is 1. Note this implies by the Pythagorean Thorem E Q = 1 2 + 3 2 = 10 . EQ = \sqrt{1^2 + 3^2} = \sqrt{10} .

Drop a perpendicular from E E to A C , AC, and call new point Q . Q. A D C E Q C \triangle ADC \sim \triangle EQC by AA similarity. This implies the ratio E Q / A D = E C / A C . EQ/AD = EC/AC . Substituting values, E Q = 1 / 10 . EQ = 1/\sqrt{10} .

Since A D G E Q G , \triangle ADG \sim \triangle EQG , Q C QC is 3 E Q 3EQ so Q C = 3 / 10 . QC = 3/\sqrt{10} .

By subtraction, A Q = A C Q C = 10 3 10 = 7 / 10 . AQ = AC - QC = \sqrt{10} - 3\sqrt{10} = 7/\sqrt{10} .

Thus the cotangent of C A E \angle CAE is A Q E Q = 7 / 10 1 / 10 = 7. \frac{AQ}{EQ} = \frac{7/\sqrt{10}}{1/\sqrt{10}} = 7 .

Nice Euclidean approach hunting down the distances and points.

When asked to find a trigonometric function of an angle, it helps to create right angled triangles to look at.

Calvin Lin Staff - 4 years, 7 months ago
Jesse Nieminen
Nov 11, 2016

Using Sine Rule (Law of Sines) we know that sin ( C A E ) E C = sin ( E C A ) A E \dfrac{\sin(\angle CAE)}{EC} = \dfrac{\sin(\angle ECA)}{AE} .

Now, using the definition of sine and the Pythagorean theorem , we get that sin ( C A E ) E C = sin ( E C A ) 5 E C 2 sin ( C A E ) = sin ( E C A ) 5 \dfrac{\sin(\angle CAE)}{EC} = \dfrac{\sin(\angle ECA)}{\sqrt{5EC^2}} \Rightarrow \sin(\angle CAE) = \dfrac{\sin(\angle ECA)}{\sqrt5} .

Again using the definition of sine, we get that sin ( A C E ) = A D A C = 1 10 sin ( C A E ) = 1 50 \sin(\angle ACE) = \dfrac{AD}{AC} = \dfrac1{\sqrt{10}} \Rightarrow \sin(\angle CAE) = \dfrac1{\sqrt{50}} .

Now using the fact that cot x = cos x sin x \cot x = \dfrac{\cos x}{\sin x} and the fact that cos x = 1 sin 2 x \cos x= \sqrt{1 - \sin^2x} , we get cot ( C A E ) = 7 \cot(\angle CAE) = \boxed{7} .

Joe Potillor
Nov 10, 2016

Vitor Santos
Nov 8, 2016
  • Thinking of A A as the origin of a cartesian plane, we have E = ( 4 , 2 ) E=\left( 4,-2 \right) and C = ( 6 , 2 ) C=\left( 6,-2 \right) .
  • Let A E = 4 ı ^ 2 ȷ ^ \vec { AE } =4\hat { \imath } - 2\hat { \jmath } and A C = 6 ı ^ 2 ȷ ^ \vec { AC } =6\hat { \imath } -2\hat { \jmath } .
  • Using the equality from the dot product* of them it develops to A E A C cos α = 6 4 + ( 2 2 ) \left| \vec { AE } \right| \cdot \left| \vec { AC } \right| \cos { \alpha } =6\cdot 4+\left( -2\cdot -2 \right) .
  • Calculating the moduli of the both vectors is simple and then we have 20 40 cos α = 28 cos α = 7 2 10 \sqrt {20} \cdot \sqrt {40} \cos { \alpha } = 28 \implies \cos{ \alpha }=\frac { 7\sqrt { 2 } }{ 10 } .
  • By Trigonometry we know that 1 cos x = tan 2 x + 1 \frac {1}{\cos {x} } = \tan ^{ 2 }{ x } + 1 , which ultimately leads to cos 2 α = 49 2 100 cos 2 α 1 = 49 2 100 1 = tan 2 α tan α = 1 7 \cos ^{ { 2 } }{ \alpha } =\frac { 49\cdot 2 }{ 100 } \implies \cos ^{ { 2 } }{ \alpha } -1=\dfrac { 49\cdot 2 }{ 100 } -1 = \tan ^ {2} { \alpha } \implies \tan {\alpha } = \frac {1}{7}
  • tan α = 1 cot α cot α = 7 \tan { \alpha } = \frac {1}{\cot { \alpha }} \implies \boxed {\cot {\alpha } = 7}

  • * Dot Product from two vectors

The dot product of 2 vectors gives us a very simple way to find the (cosines of the) angle that is inbetween them :)

Calvin Lin Staff - 4 years, 7 months ago
Rocco Dalto
Nov 11, 2016

Let x = A D , {\bf x = AD, } from the given information it follows that A B = 3 x , E C = x , D E = 2 x {\bf AB = 3x, EC = x, DE = 2x \implies }

A C = 10 x , A E = 5 x {\bf AC = \sqrt{10} x, AE = \sqrt{5} x }

The law of cosines 1 = 15 10 2 c o s α c o s α = 7 5 2 {\bf \implies 1 = 15 - 10\sqrt{2}cos\alpha \implies cos\alpha = \frac{7}{5\sqrt{2}} }

c o t α = 7. {\bf \implies cot\alpha = 7. }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...