Euler gone wild, one last time

a 9074 a 2 ( m o d 19845 ) \large a^{9074}\equiv{a^2}\pmod{19845}

How many integers a a with 1 a 1000 1\leq{a}\leq1000 satisfy the congruency above?

Extra Credit Question: How many integers a a with 1 a 1000 1\leq{a}\leq1000 satisfy the congruency a 758 a 2 ( m o d 19845 ) \large a^{758}\equiv{a^2}\pmod{19845}

Inspiration here , here , and here .


The answer is 778.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mathh Mathh
May 21, 2015

19845 = 3 4 5 7 2 19845=3^4\cdot 5\cdot 7^2 . \ Use Euler's theorem and cases.

7 a a 9074 a 2 0 ( m o d 7 2 ) 7\mid a\,\Rightarrow\, a^{9074}\equiv a^2\equiv 0\pmod{\! 7^2}

7 a a 9074 a 9074 ( m o d φ ( 7 2 ) ) a 2 ( m o d 7 2 ) 7\nmid a\,\Rightarrow\, a^{9074}\equiv a^{9074\pmod{\!\varphi(7^2)}}\equiv a^{2}\pmod{\! 7^2} .

5 a a 9074 a 2 0 ( m o d 5 ) 5\mid a\,\Rightarrow\, a^{9074}\equiv a^2\equiv 0\pmod{\! 5}

5 a a 9074 a 9074 ( m o d 4 ) a 2 ( m o d 5 ) 5\nmid a\,\Rightarrow\, a^{9074}\equiv a^{9074\pmod{\! 4}}\equiv a^2\pmod{\! 5}

3 a a 9074 a 9074 ( m o d φ ( 3 4 ) ) a 2 ( m o d 3 4 ) 3\nmid a\,\Rightarrow\, a^{9074}\equiv a^{9074\pmod{\! \varphi(3^4)}}\equiv a^2\pmod{\! 3^4}

3 a , 9 a a 9074 a 2 0 ( m o d 3 4 ) 3\mid a,\ 9\mid a\,\Rightarrow\, a^{9074}\equiv a^2\equiv 0\pmod{\! 3^4}

3 a , 9 a a 9074 0 3\mid a,\ 9\nmid a\,\Rightarrow\, a^{9074}\equiv 0 and a 2 ≢ 0 ( m o d 3 4 ) a^{2}\not\equiv 0\pmod{\! 3^4}

3 a , 9 a 3\mid a,\ 9\nmid a is the only case when a 9074 a 2 ( m o d 19845 ) a^{9074}\equiv a^2\pmod{\!19845} doesn't hold.

There are 222 222 such a a 's with 1 a 1000 1\le a\le 1000 . They are:

1 3 , 2 3 , 4 3 , 5 3 , 7 3 , 8 3 , , 331 3 , 332 3 1\cdot 3,\, 2\cdot 3,\, 4\cdot 3,\, 5\cdot 3,\, 7\cdot 3,\, 8\cdot 3,\ldots, 331\cdot 3,\, 332\cdot 3

So answer: 1000 222 = 778 1000-222=778 .

In the same way in the extra credit question we know a a doesn't satisfy it iff υ 3 ( a ) = 1 \upsilon_3 (a)=1 just like before, which is the notation for 3 1 a , 3 2 a 3^1\mid a,\, 3^2\nmid a\, (i.e. 3 1 3^1 is the highest power of 3 3 diving a a . See LTE paper ).

There are 222 222 such a a 's with 1 a 1000 1\le a\le 1000 , as shown above.

Answer: 1000 222 = 778 1000-222=778 .

very nicely done... very easy to read... thanks! (+1)

As you state correctly, no extra work is needed for the Extra Credit problem... just substitute 758 for 9074 in your solution.

First I'm using Euler's Totient function ϕ ( 19845 ) = 9072 \phi(19845)=9072 , but in the Extra Credit I'm using Carmichael's Lambda function λ ( 19845 ) = 756 \lambda(19845)=756 ... the outcome is the same either way.

Otto Bretscher - 6 years ago

I don't quite agree that " reducing a 758 a^{758} to a 2 a^2 mod the prime powers as above is a bit more difficult." Since ϕ \phi and λ \lambda are the same on odd prime powers, you can use exactly the same approach as in the case of a 9074 a^{9074} .... you can literally substitute 758 for 9074 in your solution and leave everything else unchanged.

Otto Bretscher - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...