Easier than it looks

Calculus Level 5

( ( 0 1 e ln ( 1 + ln x ) d x ) ( 0 1 e ln ( 1 + ln x ) d x ) ) 2 = ? \left(\frac{\Im \left(\displaystyle\int_{0}^{\frac{1}{e}}\ln{(1+\ln{x})}\ \mathrm dx\right )}{\Re\left (\displaystyle\int_{0}^{\frac{1}{e}}\ln{(1+\ln{x})}\ \mathrm dx\right )}\right)^2 = \ ?

Notations: ( ) \Im(\cdot) and ( ) \Re(\cdot) respectively denote the imaginary and real parts of a complex number .


The answer is 29.6226241172.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We first substitute x = e u \displaystyle x=e^{u} , so, we get

1 e u ln ( 1 + u ) d u \displaystyle \int_{-\infty}^{-1} e^{u} \ln(1+u)du

Next, we substitute v = u + 1 \displaystyle v=u+1

0 e v 1 ln ( v ) d v \displaystyle \int_{-\infty}^{0} e^{v-1} \ln(v)dv

Lastly, set y = v \displaystyle y=-v

0 e y 1 ( i π + ln ( y ) ) d y = 1 e ( i π Γ ( 1 ) + Γ ( 1 ) ) = 1 e ( i π γ ) \displaystyle \int_{0}^{\infty} e^{-y-1} \left (i \pi+\ln(y) \right )dy=\dfrac{1}{e} \left ( i \pi \Gamma(1)+\Gamma'(1) \right )=\dfrac{1}{e} \left ( i \pi-\gamma \right )

So, the answer is ( π γ ) 2 29.6226241172 \displaystyle \boxed{\left ( \dfrac{\pi}{\gamma} \right)^{2} \approx 29.6226241172}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...