∫ 0 ∞ e 2 π x − 1 cos x d x
Find the closed form of the integral above. Submit your answer to 4 significant figures.
Note: e is the Euler's number e ≈ 2 . 7 1 8 2 8 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
nice solution @Mr Hennings
For the interested reader in accordance with @Mark Hennings beautiful solution the series identities used are,
Identity 1 : n = 1 ∑ ∞ 4 π 2 n 2 + 1 1 = 4 1 coth ( 2 1 ) − 2 1
Identity 2 : n = 1 ∑ ∞ ( 4 π 2 n 2 + 1 1 ) 2 = 8 1 coth ( 2 1 ) + 1 6 1 csch ( 2 1 ) − 2 1
∫ 0 ∞ e 2 π x − 1 cos ( x ) d x = substituting x = u 2 ∫ 0 ∞ 2 u cos ( u ) n = 1 ∑ ∞ e − 2 π n u d u
Considering cos ( u ) = 2 e i u + e − i u , the integral becomes
n = 1 ∑ ∞ ∫ 0 ∞ u e − u ( 2 π n − i ) + u e − u ( 2 π n + i ) d u
= n = 1 ∑ ∞ ( 2 π n − i ) 2 1 + ( 2 π n + i ) 2 1 = 4 1 n = 1 ∑ ∞ ( π n − i / 2 ) 2 1 + ( π n + i / 2 ) 2 1 Now n = − ∞ ∑ ∞ ( π n + x ) 2 1 = csc 2 ( x )
Here it is 4 1 n = − ∞ ∑ ∞ ( π n + 2 i ) 2 1 + 1 = 1 − ( e − 1 ) 2 e See this question
Problem Loading...
Note Loading...
Set Loading...
Note that the integral is I = ∫ 0 ∞ e 2 π x − 1 cos x d x = n = 1 ∑ ∞ ∫ 0 ∞ cos x e − 2 π n x d x = 2 n = 1 ∑ ∞ ∫ 0 ∞ u cos u e − 2 π n u d u Note that
∫ 0 ∞ u cos u e − p u d u = − d p d ∫ 0 ∞ cos u e − p u d u = − d p d p 2 + 1 p = ( p 2 + 1 ) 2 p 2 − 1
for p > 0 , and hence I = 2 n = 1 ∑ ∞ ( 4 π 2 n 2 + 1 ) 2 4 π 2 n 2 − 1 = 1 − 4 1 c o s e c h 2 2 1 using some standard series identities, which means that I = 0 . 0 7 9 3 2 6 4 0 5 7 9 2 2 0 7 6 8 1 0 5 5 .