Euler Integration with Decaying Polynomial

Calculus Level 3

Suppose we want to use explicit Euler integration to compute the function y = 1 t 2 \large{y = \frac{1}{t^2}} .

y k = y k 1 + y ˙ k 1 Δ t y = 1 t 2 \large{y_k = y_{k-1} + \dot{y}_{k-1} \, \Delta t \\ y = \frac{1}{t^2}}

The k k subscript denotes the present processing interval, and the k 1 k-1 subscript denotes the previous processing interval. The processing takes place with a constant time step ( Δ t ) (\Delta t) .

Which of these quantities is also constant?

Note: Assume that t 0 t \neq 0

y k 1 y k 2 y k 1 3 / 2 \large{\frac{y_{k-1} - y_k }{2 \, y_{k-1}^{3/2} }} y k 1 + y k 2 y k 1 3 / 2 \large{\frac{y_{k-1} + y_k }{2 \, y_{k-1}^{3/2} }} y k 1 y k 2 y k 1 1 / 2 \large{\frac{y_{k-1} - y_k }{2 \, y_{k-1}^{1/2} }} y k 1 + y k 2 y k 1 1 / 2 \large{\frac{y_{k-1} + y_k }{2 \, y_{k-1}^{1/2} }}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Jun 5, 2018

Write the derivative of y y in terms of y y .

y = 1 t 2 = t 2 y ˙ = 2 t 3 = 2 y 3 / 2 \large{y = \frac{1}{t^2} = t^{-2} \\ \dot{y} = -2 t^{-3} = -2 y^{3/2}}

Plug into Euler equation:

y k = y k 1 + y ˙ k 1 Δ t y k = y k 1 2 y k 1 3 / 2 Δ t \large{y_k = y_{k-1} + \dot{y}_{k-1} \, \Delta t \\ y_k = y_{k-1} -2 y_{k-1}^{3/2} \, \Delta t }

Since Δ t \Delta t is a constant, find another expression for it by re-arranging.

Δ t = y k 1 y k 2 y k 1 3 / 2 \large{\Delta t = \frac{y_{k-1} - y_k}{2 y_{k-1}^{3/2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...