Suppose the sum n = 1 ∑ ∞ [ H n − γ − ln n − 2 n ζ ( 2 n ) ] can be expressed in the form m 1 ( a + b γ − c ln ( k π ) ) , where a , b , c , and m are positive integers and g cd ( a , b , c , m ) = 1 .
Find a + b + c + k + m .
Notations:
γ ≈ 0 . 5 7 7 2 denotes the Euler-Mascheroni constant .
ζ ( ⋅ ) denotes the Riemann Zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
n = 1 ∑ ∞ n ζ ( 2 n ) − 1 = n = 1 ∑ ∞ n 1 k = 2 ∑ ∞ k 2 n 1 = k = 2 ∑ ∞ n = 1 ∑ ∞ n ( 1 / k 2 ) n = k = 2 ∑ ∞ − ln ( 1 − k 2 1 ) = − ln [ k = 2 ∏ ∞ k 2 k 2 − 1 ] = − ln [ k = 2 ∏ ∞ k 2 ( k + 1 ) ( k − 1 ) ] = − ln [ 2 2 ( 3 ) ( 1 ) ⋅ 3 2 ( 4 ) ( 2 ) ⋅ 4 2 ( 5 ) ( 3 ) ⋅ … ] = − ln 2 2 2 = ln 2 .
(In the telescoping product, every integer ≥ 3 appears twice above, and twice below.)
What Hn stands for
Problem Loading...
Note Loading...
Set Loading...
Let us first observe the partial sums of the series, in individual parts (where we can, for now): n = 1 ∑ N H n = ( N + 1 ) ( H N + 1 − 1 ) ; and n = 1 ∑ N ln n = ln N ! . (Try proving the first as an exercise.)
As N → ∞ , we find that
n = 1 ∑ N [ H n − γ − ln n ] = ( N + 1 ) ( H N + 1 − 1 ) − γ N − ln N ! → ( N + 1 ) ( γ + ln N + 2 N 1 ) − γ N − ( N ln N − N + 2 1 ln ( 2 π N ) ) → 2 1 ( 1 + γ − ln ( 2 π ) ) + 2 1 H N
where we have used that H N = γ + ln N + 2 N 1 + O ( N − 2 ) , and ln N ! = N ln N − N + 2 1 ln ( 2 π N ) + O ( N − 1 ) (Stirling's approximation). Therefore
n = 1 ∑ ∞ [ H n − γ − ln n − 2 n 1 ] = N → ∞ lim n = 1 ∑ N [ H n − γ − ln n ] − 2 1 H N = 2 1 ( 1 + γ − ln ( 2 π ) )
Then note that n = 1 ∑ ∞ n ζ ( 2 n ) − 1 = ln 2 (see proof in comments). Finally,
n = 1 ∑ ∞ [ H n − γ − ln n − 2 n ζ ( 2 n ) ] = n = 1 ∑ ∞ [ H n − γ − ln n − 2 n 1 ] − n = 1 ∑ ∞ [ 2 n ζ ( 2 n ) − 1 ] = 2 1 ( 1 + γ − ln ( 2 π ) ) − 2 1 ln 2 = 2 1 ( 1 + γ − ln ( 4 π ) )