Euler-Mascheroni Mashup

Calculus Level 5

Suppose the sum n = 1 [ H n γ ln n ζ ( 2 n ) 2 n ] \sum_{n=1}^\infty \left[ H_n - \gamma - \ln n - \dfrac{\zeta(2n)}{2n} \right] can be expressed in the form 1 m ( a + b γ c ln ( k π ) ) , \frac{1}{m} \big(a + b\gamma - c\ln(k\pi) \big), where a , b , c , a, b, c, and m m are positive integers and gcd ( a , b , c , m ) = 1 \gcd(a,b,c,m) = 1 .

Find a + b + c + k + m a+b+c+k+m .

Notations:


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jake Lai
Oct 12, 2016

Let us first observe the partial sums of the series, in individual parts (where we can, for now): n = 1 N H n = ( N + 1 ) ( H N + 1 1 ) \displaystyle \sum_{n=1}^N H_n = (N+1)(H_{N+1} - 1) ; and n = 1 N ln n = ln N ! \displaystyle \sum_{n=1}^N \ln n = \ln N! . (Try proving the first as an exercise.)

As N N \to \infty , we find that

n = 1 N [ H n γ ln n ] = ( N + 1 ) ( H N + 1 1 ) γ N ln N ! ( N + 1 ) ( γ + ln N + 1 2 N ) γ N ( N ln N N + 1 2 ln ( 2 π N ) ) 1 2 ( 1 + γ ln ( 2 π ) ) + 1 2 H N \begin{aligned} \sum_{n=1}^N \left[ H_n - \gamma - \ln n \right] &= (N+1)(H_{N+1} - 1) - \gamma N - \ln N! \\ &\to (N+1)(\gamma + \ln N + \frac{1}{2N}) - \gamma N - (N\ln N - N + \dfrac{1}{2}\ln(2\pi N)) \\ &\to \frac{1}{2}(1 + \gamma - \ln(2\pi)) + \frac{1}{2}H_N \end{aligned}

where we have used that H N = γ + ln N + 1 2 N + O ( N 2 ) H_N = \gamma + \ln N + \dfrac{1}{2N} + O(N^{-2}) , and ln N ! = N ln N N + 1 2 ln ( 2 π N ) + O ( N 1 ) \ln N! = N\ln N - N + \dfrac{1}{2}\ln(2\pi N) + O(N^{-1}) (Stirling's approximation). Therefore

n = 1 [ H n γ ln n 1 2 n ] = lim N n = 1 N [ H n γ ln n ] 1 2 H N = 1 2 ( 1 + γ ln ( 2 π ) ) \begin{aligned} \sum_{n=1}^\infty \left[ H_n - \gamma - \ln n - \frac{1}{2n} \right] &= \lim_{N \to \infty} \sum_{n=1}^N \left[ H_n - \gamma - \ln n \right] - \frac{1}{2}H_N \\ &= \frac{1}{2}(1 + \gamma - \ln(2\pi)) \end{aligned}

Then note that n = 1 ζ ( 2 n ) 1 n = ln 2 \displaystyle \sum_{n=1}^\infty \frac{\zeta(2n)-1}{n} = \ln 2 (see proof in comments). Finally,

n = 1 [ H n γ ln n ζ ( 2 n ) 2 n ] = n = 1 [ H n γ ln n 1 2 n ] n = 1 [ ζ ( 2 n ) 1 2 n ] = 1 2 ( 1 + γ ln ( 2 π ) ) 1 2 ln 2 = 1 2 ( 1 + γ ln ( 4 π ) ) \begin{aligned} \sum_{n=1}^\infty \left[ H_n - \gamma - \ln n - \frac{\zeta(2n)}{2n} \right] &= \sum_{n=1}^\infty \left[ H_n - \gamma - \ln n - \frac{1}{2n} \right] - \sum_{n=1}^\infty \left[ \frac{\zeta(2n)-1}{2n} \right] \\ &= \frac{1}{2}(1 + \gamma - \ln(2\pi)) - \frac{1}{2}\ln 2 \\ &= \frac{1}{2}(1 + \gamma - \ln(4\pi)) \end{aligned}

n = 1 ζ ( 2 n ) 1 n = n = 1 1 n k = 2 1 k 2 n = k = 2 n = 1 ( 1 / k 2 ) n n = k = 2 ln ( 1 1 k 2 ) = ln [ k = 2 k 2 1 k 2 ] = ln [ k = 2 ( k + 1 ) ( k 1 ) k 2 ] = ln [ ( 3 ) ( 1 ) 2 2 ( 4 ) ( 2 ) 3 2 ( 5 ) ( 3 ) 4 2 ] = ln 2 2 2 = ln 2. \begin{aligned} \sum_{n=1}^\infty \frac{\zeta(2n)-1}{n} &= \sum_{n=1}^\infty \frac{1}{n} \sum_{k=2}^\infty \frac{1}{k^{2n}} \\ &= \sum_{k=2}^\infty \sum_{n=1}^\infty \frac{(1/k^2)^n}{n} \\ &= \sum_{k=2}^\infty -\ln(1-\frac{1}{k^2}) \\ &= -\ln \left[ \prod_{k=2}^\infty \frac{k^2-1}{k^2} \right] \\ &= -\ln \left[ \prod_{k=2}^\infty \frac{(k+1)(k-1)}{k^2} \right] \\ &= -\ln \left[ \frac{(3)(1)}{2^2} \cdot \frac{(4)(2)}{3^2} \cdot \frac{(5)(3)}{4^2} \cdot \ldots \right] \\ &= -\ln \frac{2}{2^2} \\ &= \ln 2. \end{aligned}

(In the telescoping product, every integer 3 \geq 3 appears twice above, and twice below.)

Jake Lai - 4 years, 8 months ago

Log in to reply

nice solution

Kaneki Yen - 4 years, 7 months ago

What Hn stands for

yohenba soibam - 4 years, 5 months ago

Log in to reply

The nth harmonic number.

Joe Mansley - 4 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...