Euler or Fermat?

Is 10 0 101 100 100^{101} - 100 divisible by 101 101 ?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mahdi Raza
Jan 17, 2020

By Fermat's little theorem

a p a ( m o d p ) a^{p} \equiv a \pmod p

Let a = 100 a = 100 and p = 101 p = 101

10 0 101 100 ( m o d 101 ) 100^{101} \equiv 100 \pmod {101} 10 0 101 100 0 ( m o d 101 ) 100^{101} - 100 \equiv 0 \pmod {101}

Thus we get that 101 10 0 101 100 \boxed{101 \mid 100^{101} - 100} and the answer is Yes \boxed{\text{Yes}}

Chris Lewis
Jan 22, 2020

10 0 101 100 ( 1 ) 101 ( 1 ) 1 + 1 0 ( m o d 101 ) 100^{101}-100 \equiv (-1)^{101}-(-1) \equiv -1+1 \equiv 0 \pmod {101} .

Hence 101 101 divides 10 0 101 100 100^{101}-100 .

Fantastic!

Mahdi Raza - 1 year, 4 months ago
Gandoff Tan
Jan 22, 2020

= 10 0 101 100 = 100 ( 10 0 100 1 ) = 100 ( 1 0 0 × 100 1 ) = 100 ( 9 9 × 100 ) = 900 ( 1 1 × 100 ) \begin{aligned} &\textcolor{#FFFFFF}{=}100^{101}-100\\ &=100\left(100^{100}-1\right)\\ &=100\left(1\underbrace{0\dots0}_{\times100}-1\right)\\ &=100\left(\underbrace{9\dots9}_{\times100}\right)\\ &=900\left(\underbrace{1\dots1}_{\times100}\right) \end{aligned}

101 × 11 = 1111 101 × 110011 = 11111111 101 × 1100110011 = 111111111111 101 × 11 0011 0011 × ( n 1 ) = 1 1 × 4 n 101 × 11 0011 0011 × 24 = 1 1 × 100 900 ( 101 × 11 0011 0011 × 24 ) = 900 ( 1 1 × 100 ) 101 ( 900 × 11 0011 0011 × 24 ) = 10 0 101 100 \begin{aligned} 101\times11&=1111\\ 101\times110011&=11111111\\ 101\times1100110011&=111111111111\\ &\vdots\\ 101\times11\underbrace{0011\dots0011}_{\times(n-1)}&=\underbrace{1\dots1}_{\times4n}\\ &\vdots\\ 101\times11\underbrace{0011\dots0011}_{\times24}&=\underbrace{1\dots1}_{\times100}\\ 900\left(101\times11\underbrace{0011\dots0011}_{\times24}\right)&=900\left(\underbrace{1\dots1}_{\times100}\right)\\ 101\left(900\times11\underbrace{0011\dots0011}_{\times24}\right)&=100^{101}-100 \end{aligned}

10 0 101 100 = 101 k 101 10 0 101 100 100^{101}-100=101k\implies\boxed{101\mid 100^{101}-100}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...