Euler ϕ \phi function

Algebra Level 3

Find the last three digits of 2 2017 2^{2017} .


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 16, 2018

Let N = 2 2017 N=2^{2017} . We need to find N m o d 1000 N \bmod 1000 . Since 2 , 1000 2, 1000 are not coprime integers, we have to consider the factors of 1000 that are 8 and 125 separately.

Factor 8: N 2 2017 0 (mod 8) N \equiv 2^{2017} \equiv 0 \text{ (mod 8)}

Factor 125:

N 2 2017 m o d ϕ ( 125 ) (mod 125) Since gcd ( 2 , 125 ) = 1 , Euler’s theorem applies. 2 2017 m o d 100 (mod 125) Euler’s totient function ϕ ( 125 ) = 100 2 17 (mod 125) 2 10 × 2 7 (mod 125) 1024 × 128 (mod 125) 24 × 3 (mod 125) 72 (mod 125) \begin{aligned} N & \equiv 2^{\color{#3D99F6}2017 \bmod \phi(125)} \text{ (mod 125)} & \small \color{#3D99F6} \text{Since }\gcd(2,125) =1 \text{, Euler's theorem applies.} \\ & \equiv 2^{\color{#3D99F6}2017 \bmod 100} \text{ (mod 125)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(125) = 100 \\ & \equiv 2^{17} \text{ (mod 125)} \\ & \equiv 2^{10}\times 2^7 \text{ (mod 125)} \\ & \equiv 1024\times 128 \text{ (mod 125)} \\ & \equiv 24\times 3 \text{ (mod 125)} \\ & \equiv 72 \text{ (mod 125)} \end{aligned}

Since 72 0 (mod 8) N 72 (mod 1000) 72 \equiv 0 \text{ (mod 8)} \implies N \equiv \boxed{72} \text{ (mod 1000)} .

Then shouldn't it be 072?

Theodore Sinclair - 3 years, 1 month ago

Log in to reply

Not necessary. We don't need to show the front 0's by convention.

Chew-Seong Cheong - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...