Euler's radicalism

Calculus Level 1

Find the value of

e e e 3 e 4 e 5 e 6 \frac{e}{\sqrt e} \cdot \frac{\sqrt[3]{e}}{\sqrt [4]{e}} \cdot \frac{\sqrt[5]{e}}{\sqrt [6]{e}} \cdots


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Adhiraj Dutta
Apr 22, 2020

e e e 3 e 4 e 5 e 6 \dfrac{e}{\sqrt e} \cdot \dfrac{\sqrt[3]{e}}{\sqrt [4]{e}} \cdot \dfrac{\sqrt[5]{e}}{\sqrt [6]{e}} \dots can be rewritten as e 1 1 2 + 1 3 1 4 + 1 5 + \displaystyle e^{\displaystyle 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} + \dots}

Now, we know that

ln ( 1 + x ) = x x 2 2 + x 3 3 x 4 4 + x 5 5 + , f o r 1 x 1 \ln(1 + x) = \displaystyle x - \dfrac{x^2}{2} + \dfrac{x^3}{3} - \dfrac{x^4}{4} + \dfrac{x^5}{5} + \dots , for -1 \leq x \leq 1

Put x = 1 x = 1 -

1 1 2 + 1 3 1 4 + 1 5 + = ln 2 \displaystyle 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} + \dots = \ln2

Hence now

\[\begin{align*}e^{\displaystyle 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} + \dots} &= e^{\ln2} \\

&= \boxed{2} \end{align*}\]

Your, LaTeX needs to be corrected man :).

Vilakshan Gupta - 1 year, 1 month ago

Log in to reply

Found the extra bracket causing the trouble haha

Adhiraj Dutta - 1 year, 1 month ago

@Adhiraj Dutta , you can use \dfrac \pi 3 π 3 \dfrac \pi 3 for proper size fractions. Similarly for \dbinom mn ( m n ) \dbinom mn , while \binom mn ( m n ) \binom mn . You can also use \displaystyle \frac 1{20}, \binom {20}5, \int \frac \pi 2^\infty, \sum {k=1}^\infty, \lim_{n \to \infty} 1 20 , ( 20 5 ) , π 2 , k = 1 , lim n \displaystyle \frac 1{20}, \binom {20}5, \int_\frac \pi 2^\infty, \sum_{k=1}^\infty, \lim_{n \to \infty} . Yes braces { } are optional for single character. We need backslash in front for all function including \ln 2 ln 2 \ln 2 , note that ln is not italic (slanted) and there is a space between ln and 2. All functions including \sin \cos \tan \sec \csc \max \min \gcd ...

Chew-Seong Cheong - 1 year, 1 month ago

Log in to reply

I'm weak with Latex, so I refrain from posting solutions for most problems. Thank you for your advice.

Adhiraj Dutta - 1 year, 1 month ago
Aruna Yumlembam
May 17, 2020

Let , P=(e/e^1/2)(e^1/3/e^1/4)(e^1/5/e^1/6).... Then taking natural log of both sides yields, ln(P)=(1-1/2)+(1/3-1/4)+.... Recognizing the sum is simply ln(2),we the exponential as our result, P=2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...