Euler's substitution might just work!

Calculus Level 5

0 4 x 2 + 9 ( x + x 2 + 9 ) x 2 + 9 x d x \large \displaystyle \large \int_{0}^{4} \dfrac{\sqrt{x^{2}+9} \left (x+\sqrt{x^{2}+9}\right)}{\sqrt{x^{2}+9}-x} \, dx

Find the value of the closed form of the above integral to 3 decimal places.


If you are looking for more such twisted questions, Twisted problems for JEE aspirants is for you!


The answer is 65.472.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Feb 16, 2017

Putting x = 3 sinh u x = 3\sinh u gives (note that sinh 1 4 3 = ln 3 \sinh^{-1}\tfrac43 = \ln3 ): 0 4 x 2 + 9 ( x + x 2 + 9 ) x 2 + 9 x d x = 9 0 ln 3 cosh 2 u e 2 u d u = 9 4 0 ln 3 ( e 4 u + 2 e 2 u + 1 ) d u = 9 4 [ 1 4 e 4 u + e 2 u + u ] 0 ln 3 = 63 + 9 4 ln 3 \begin{aligned} \int_0^4 \frac{\sqrt{x^2+9}\big(x + \sqrt{x^2+9}\big)}{\sqrt{x^2+9} - x}\,dx & = \; 9\int_0^{\ln3} \cosh^2u \,e^{2u}\,du \; =\; \tfrac94\int_0^{\ln3} (e^{4u} + 2e^{2u} + 1)\,du \\ & = \tfrac94\Big[ \tfrac14e^{4u} + e^{2u} + u\Big]_0^{\ln3} \; = \; 63 + \tfrac94\ln3 \end{aligned}

wow! this is the shortest substitution so far!!

Rohith M.Athreya - 4 years, 3 months ago
Guilherme Niedu
Feb 15, 2017

First we set Euler substitution x 2 + 9 = x + t \sqrt{x^2 + 9} = x + t . This leads to:

x 2 + 9 = x 2 + 2 x t + t 2 x^2 + 9 = x^2 + 2xt + t^2

x = 9 t 2 2 t \large x = \frac{9-t^2}{2t}

d x = 9 + t 2 2 t 2 d t \large dx = - \frac{9 + t^2}{2t^2} dt

x 2 + 9 = 81 18 t 2 + t 4 4 t 2 + 9 = 9 + t 2 2 t \large \sqrt{x^2 + 9} = \sqrt{ \frac{81-18t^2 + t^4}{4t^2} +9} = \frac{9+t^2}{2t}

So:

0 4 x 2 + 9 ( x + x 2 + 9 ) x 2 + 9 x d x \large \displaystyle \large \int_0^4 \frac{\sqrt{x^2 + 9}(x + \sqrt{x^2 + 9})}{\sqrt{x^2 + 9} - x} dx

Becomes:

3 1 9 + t 2 2 t ( 9 t 2 2 t + 9 + t 2 2 t ) 9 + t 2 2 t 9 t 2 2 t 9 + t 2 2 t 2 d t \large \displaystyle \large \int_3^1 \frac{\frac{9+t^2}{2t}(\frac{9-t^2}{2t} + \frac{9+t^2}{2t})}{\frac{9+t^2}{2t} - \frac{9-t^2}{2t}} \cdot - \frac{9 + t^2}{2t^2} dt

= 1 3 9 + t 2 2 t 18 2 t t 9 + t 2 2 t 2 d t = \large \displaystyle \large \int_1^3 \frac{\frac{9+t^2}{2t} \cdot \frac{18}{2t}} {t} \cdot \frac{9 + t^2}{2t^2} dt

= 9 4 1 3 ( 9 + t 2 ) 2 t 5 d t = \large \displaystyle \large \frac94 \int_1^3 \frac{(9+t^2)^2}{t^5} dt

= 9 4 1 3 ( 1 t 18 t 3 + 81 t 5 ) d t = \large \displaystyle \large \frac94 \int_1^3 \Big ( \frac{1}{t} - \frac{18}{t^3} + \frac{81}{t^5} \Big) dt

= 9 4 ( l n ( t ) 1 3 9 t 2 1 3 81 4 t 4 1 3 ) = \large \displaystyle \large \frac94 \Big ( ln(t) \Big |_1^3 - \frac{9}{t^2} \Big |_1^3 - \frac{81}{4t^4} \Big |_1^3 \Big)

= 9 4 ( l n ( 3 ) ( 1 9 ) ( 1 4 81 4 ) ) = \large \displaystyle \large \frac94 \Big (ln(3) - (1 - 9) - (\frac{1}{4} - \frac{81}{4} ) \Big )

= 9 4 ( l n ( 3 ) + 28 ) = \large \displaystyle \large \frac94 \Big (ln(3) + 28 \Big )

= 63 + 9 4 l n ( 3 ) = \large \displaystyle \large 63 + \frac94 ln(3)

65.472 \color{#3D99F6} \approx \large \displaystyle \large \fbox{65.472}

Brilliant method! I went through an ordeal when I tried to rationalize the denominator and then used trigonometric substitution.

沂泓 纪 - 4 years, 3 months ago

Log in to reply

Thank you sir!

Guilherme Niedu - 4 years, 3 months ago

x=3tanv could also be helpuful substitution

Zerocool 141 - 4 years, 3 months ago
Chew-Seong Cheong
Feb 16, 2017

I = 0 4 x 2 + 9 ( x + x 2 + 9 ) x 2 + 9 x d x = 0 4 x 2 + 9 ( x + x 2 + 9 ) 2 ( x 2 + 9 x ) ( x 2 + 9 + x ) d x = 1 9 0 4 x 2 + 9 ( x + x 2 + 9 ) 2 d x Let x = 3 tan θ , d x = 3 sec 2 θ d θ = 1 9 0 tan 1 4 3 3 sec θ ( 3 tan θ + 3 sec θ ) 2 3 sec 2 θ d θ = 9 0 tan 1 4 3 sec 3 θ ( tan θ + sec θ ) 2 d θ = 9 0 tan 1 4 3 sec 3 θ tan 2 θ + 2 sec 4 θ tan θ + sec 5 θ d θ = 9 0 tan 1 4 3 sec 5 θ sec 3 θ + 2 sec 4 θ tan θ + sec 5 θ d θ = 9 0 tan 1 4 3 2 sec 5 θ sec 3 θ + 2 sec 4 θ tan θ d θ = 18 0 tan 1 4 3 sec 5 θ d θ 9 0 tan 1 4 3 sec 3 θ d θ + 18 0 tan 1 4 3 sec 4 θ tan θ d θ See: reduction formula = 18 ( 3 4 0 tan 1 4 3 sec 3 θ d θ + sec 3 θ tan θ 4 0 tan 1 4 3 ) 9 ( 1 2 0 tan 1 4 3 sec θ d θ + sec θ tan θ 2 0 tan 1 4 3 ) + 18 1 5 3 sec 3 θ d sec θ = 18 ( 3 4 ( 1 2 0 tan 1 4 3 sec θ d θ + 10 9 ) + 125 81 ) 9 ( 1 2 0 tan 1 4 3 sec θ d θ + 10 9 ) + 18 ( 5 4 3 4 4 1 4 ) = 9 4 0 tan 1 4 3 sec θ d θ + 63 = 9 4 ln ( tan θ + sec θ ) 0 tan 1 4 3 + 63 = 9 ln 3 4 + 63 65.472 \begin{aligned} I & = \int_0^4 \frac {\sqrt{x^2+9}\left(x + \sqrt{x^2+9} \right)}{\sqrt{x^2+9}-x} dx \\ & = \int_0^4 \frac {\sqrt{x^2+9}\left(x + \sqrt{x^2+9} \right)^2}{\left(\sqrt{x^2+9}-x\right)\left(\sqrt{x^2+9} + x\right)} dx \\ & = \frac 19 \int_0^4 \sqrt{x^2+9}\left(x + \sqrt{x^2+9} \right)^2 dx \qquad \small \color{#3D99F6} \text{Let } x = 3 \tan \theta, \ dx = 3 \sec^2 \theta \ d\theta \\ & = \frac 19 \int_0^{\tan^{-1} \frac 43} 3\sec \theta \left(3 \tan \theta + 3 \sec \theta \right)^2 \cdot 3 \sec^2 \theta \ d \theta \\ & = 9 \int_0^{\tan^{-1} \frac 43} \sec^3 \theta \left( \tan \theta + \sec \theta \right)^2 \ d \theta \\ & = 9 \int_0^{\tan^{-1} \frac 43} \sec^3 \theta \tan^2 \theta + 2 \sec^4 \theta \tan \theta + \sec^5 \theta \ d \theta \\ & = 9 \int_0^{\tan^{-1} \frac 43} \sec^5 \theta - \sec^3 \theta + 2 \sec^4 \theta \tan \theta + \sec^5 \theta \ d \theta \\ & = 9 \int_0^{\tan^{-1} \frac 43} 2 \sec^5 \theta - \sec^3 \theta + 2 \sec^4 \theta \tan \theta \ d \theta \\ & = 18 {\color{#3D99F6}\int_0^{\tan^{-1} \frac 43} \sec^5 \theta \ d\theta} - 9 {\color{#3D99F6}\int_0^{\tan^{-1} \frac 43} \sec^3 \theta \ d \theta} + 18 \int_0^{\tan^{-1} \frac 43} \sec^4 \theta \tan \theta \ d \theta \qquad \small \color{#3D99F6} \text{See: reduction formula} \\ & = 18 \left({\color{#3D99F6} \frac 34 \int_0^{\tan^{-1} \frac 43} \sec^3 \theta \ d\theta + \frac {\sec^3 \theta \tan \theta}4 \bigg|_0^{\tan^{-1} \frac 43}}\right) - 9 \left( {\color{#3D99F6} \frac 12 \int_0^{\tan^{-1} \frac 43} \sec \theta \ d\theta + \frac {\sec \theta \tan \theta}2 \bigg|_0^{\tan^{-1} \frac 43}}\right) + 18 \int_1^\frac 53 \sec^3 \theta \ d \sec \theta \\ & = 18 \left(\frac 34 \left(\frac 12 \int_0^{\tan^{-1} \frac 43} \sec \theta \ d\theta + \frac {10}9 \right) + \frac {125}{81} \right) - 9 \left(\frac 12 \int_0^{\tan^{-1} \frac 43} \sec \theta \ d\theta + \frac {10}9 \right) + 18 \left(\frac {5^4}{3^4 4} - \frac 14\right) \\ & = \frac 94 \int_0^{\tan^{-1} \frac 43} \sec \theta \ d\theta + 63 \\ & = \frac 94 \cdot \ln (\tan \theta + \sec \theta) \bigg|_0^{\tan^{-1} \frac 43} + 63 \\ & = \frac {9\ln 3}4 + 63 \approx \boxed{65.472} \end{aligned}


Reduction Formula: sec n x d x = n 2 n 1 sec n 2 x d x + sec n 2 x tan x n 1 \displaystyle \int \sec^n x \ dx = \frac {n-2}{n-1} \int \sec^{n-2} x \ dx + \frac {\sec^{n-2} x \tan x}{n-1}

In the 5th step . Directly by taking secθ+tanθ=t . We can solve in next two steps very easily

Sudhamsh Suraj - 4 years, 3 months ago

Log in to reply

can u show me how?as i am still ending up with the same integrals

Rohith M.Athreya - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...