Evaluate

Geometry Level 2

sin 3 8 sin 5 2 cos 3 8 cos 5 2 = ? \sin 38^\circ \sin 52^\circ - \cos 38^\circ \cos 52^\circ = \, ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ojasee Duble
Dec 21, 2016

Since, sin 38º = sin(90º - 52º) = cos 52º

And, cos38º = cos(90º - 52º) = sin 52º

Therefore,

sin 38º sin 52º - cos 38º cos 52º = cos 52º sin 52º - sin 52º cos 52º = 0

Ans. 0

Liam Lutton
Mar 10, 2018

cos(A + B) = cos(A)cos(B) - sin(A)sin(B), since this equation is the opposite of that, we get -cos(A + B) = sin(A)sin(B) - cos(A)cos(B) inserting our values: -cos(38 + 52) = sin(38)sin(52) - cos(38)cos(52) = -cos(90) = -0 = 0

Marta Reece
Apr 16, 2017

sin 3 8 sin 5 2 cos 3 8 cos 5 2 = cos ( 3 8 + 5 2 ) = cos 9 0 = 0 \sin 38^\circ \sin 52^\circ - \cos 38^\circ \cos 52^\circ =-\cos(38^\circ+52^\circ)=-\cos90^\circ=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...