Evaluate

For a positive integer n n , simplify

( n + 2 ) ! ( n + 1 ) ! n ! ( n + 2 ) × n ! . \frac{(n+2)! - (n+1)! - n!}{(n+2)\times n!} .

1 1 n n n + 1 n+1 n + 2 n+2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Feb 24, 2017

Note that:

( n + 2 ) ! = ( n + 2 ) ( n + 1 ) ( n ! ) (n + 2)! = (n + 2)(n + 1)(n!)

and

( n + 1 ) ! = ( n + 1 ) ( n ! ) (n + 1)! = (n + 1)(n!)

Thus,

( n + 2 ) ! ( n + 1 ) ! n ! ( n + 2 ) ( n ! ) = \displaystyle \frac{(n + 2)! - (n + 1)! - n!}{(n + 2)(n!)} =

n ! [ ( n + 2 ) ( n + 1 ) ( n + 1 ) 1 ] n ! ( n + 2 ) = \displaystyle \frac{n!\bigg[(n + 2)(n + 1) - (n + 1) - 1\bigg]}{n! (n + 2)} =

( n + 2 ) ( n + 1 ) ( n + 1 ) 1 n + 2 = \displaystyle \frac{(n + 2)(n + 1) - (n + 1) - 1}{n + 2} =

n 2 + 2 n n + 2 = \displaystyle \frac{n^2 + 2n}{n + 2} =

n ( n + 2 ) n + 2 = \displaystyle \frac{n(n + 2)}{n + 2} =

n \boxed{n}

Christopher Ho
Mar 18, 2017

Substitute n=2 into the equation

(2+2)!-(2+1)!-2! / (2+2) (2!)

= 24-6-2 / 8 = 16/8 = 2,

which is equal to n.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...