Evaluate an Infinite Sum

Calculus Level 2

Evaluate

n = 1 4 n + 5 3 n 1 ( 1 2 ) n + 2 \sum_{n=1}^\infty \frac{4n+5}{3^{n-1}}\left(\frac{1}{2}\right)^{n+2}


The answer is 1.47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = n = 1 4 n + 5 3 n 1 ( 1 2 ) n + 2 = 1 2 n = 1 n 6 n 1 + 5 8 n = 0 ( 1 6 ) n = 1 2 n = 1 d d x x n x = 1 6 + 5 8 ( 1 1 1 6 ) = 1 2 d d x n = 1 x n x = 1 6 + 3 4 = 1 2 d d x ( x 1 x ) x = 1 6 + 3 4 = 1 2 ( 1 x ) 2 x = 1 6 + 3 4 = 18 25 + 3 4 = 147 100 = 1.47 \begin{aligned} S & = \sum_{\blue{n=1}}^\infty \frac {4n+5}{3^{n-1}}\left(\frac 12\right)^{n+2} \\ & = \frac 12 \sum_{\blue{n=1}}^\infty \frac n{6^{n-1}} + \frac 58 \sum_{\red{n=0}}^\infty \left(\frac 16\right)^n \\ & = \frac 12 \sum_{n=1}^\infty \frac d{dx}x^n\ \bigg|_{x = \frac 16} + \frac 58 \left(\frac 1{1-\frac 16}\right) \\ & = \frac 12 \cdot \frac d{dx} \sum_{n=1}^\infty x^n\ \bigg|_{x = \frac 16} + \frac 34 \\ & = \frac 12 \cdot \frac d{dx} \left(\frac x{1-x}\right) \bigg|_{x = \frac 16} + \frac 34 \\ & = \frac 1{2(1-x)^2} \bigg|_{x = \frac 16} + \frac 34 \\ & = \frac {18}{25} + \frac 34 = \frac {147}{100} = \boxed{1.47} \end{aligned}

Cristiano Sansó
Apr 6, 2020

n = 1 4 n + 5 3 n 1 ( 1 2 ) n + 2 \sum_{n=1}^\infty \frac{4n+5}{3^{n-1}}(\frac{1}{2})^{n+2}

= 3 4 n = 1 4 n + 5 3 n ( 1 2 ) n =\frac{3}{4}\sum_{n=1}^\infty \frac{4n+5}{3^{n}}(\frac{1}{2})^{n}

= 3 4 n = 1 4 n 3 n ( 1 2 ) n + 3 4 n = 1 5 3 n ( 1 2 ) n =\frac{3}{4}\sum_{n=1}^\infty \frac{4n}{3^{n}}(\frac{1}{2})^{n} + \frac{3}{4}\sum_{n=1}^\infty \frac{5}{3^{n}}(\frac{1}{2})^{n}

= 3 n = 1 n 6 n + 15 4 n = 1 ( 1 6 ) n =3\sum_{n=1}^\infty \frac{n}{6^{n}} + \frac{15}{4}\sum_{n=1}^\infty (\frac{1}{6})^{n}

= 3 n = 1 n 6 n + 15 4 ( 1 6 1 1 6 ) =3\sum_{n=1}^\infty \frac{n}{6^{n}} + \frac{15}{4}(\frac{\frac{1}{6}}{1-\frac{1}{6}})

we can notice that

d d x n = 0 x n = d d x 1 1 x \frac{d}{dx} \sum_{n=0}^\infty x^{n} = \frac{d}{dx} \frac{1}{1-x}

n = 1 n x n 1 = 1 ( 1 x ) 2 \sum_{n=1}^\infty nx^{n-1} = \frac{1}{(1-x)^{2}}

n = 1 n x n = x ( 1 x ) 2 \sum_{n=1}^\infty nx^{n} = \frac{x}{(1-x)^{2}}

n = 1 n 1 x n = x ( 1 x ) 2 \sum_{n=1}^\infty \frac{n}{\frac{1}{x}^{n}} = \frac{x}{(1-x)^{2}}

so, with x = 1/6

3 n = 1 n 6 n + 15 4 ( 1 6 1 1 6 ) 3\sum_{n=1}^\infty \frac{n}{6^{n}} + \frac{15}{4}(\frac{\frac{1}{6}}{1-\frac{1}{6}})

= 3 ( 6 ( 6 1 ) 2 ) + 3 4 =3(\frac{6}{(6-1)^{2}}) + \frac{3}{4}

= 18 25 + 3 4 =\frac{18}{25} + \frac{3}{4}

= 147 100 =\frac{147}{100}

= 1.47 =\boxed{1.47}

Start with: 1 1 x = k = 0 x k . \frac{1}{1-x}=\sum_{k=0}^{\infty}x^k. Then take derivative with respect to x x . 1 ( 1 x ) 2 = k = 1 k x k 1 . \frac{1}{(1-x)^2}=\sum_{k=1}^{\infty}kx^{k-1}. This is also main part of the solution as you didn't describe this in your solution.

Rishabh Deep Singh - 1 year, 2 months ago

ah yes, thank you

Cristiano Sansó - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...