Evaluate the double integral

Calculus Level 5

0 1 0 1 arcsin ( 1 x y ) 1 y x y y + 1 d x d y \large \int_{0}^{1} \int_{0}^{1} \frac{ \arcsin( \sqrt{1-x} \sqrt{y})}{\sqrt{1-y} \sqrt{xy-y+1} } \; dx \; dy

Evaluate the double integral above. If the answer comes in the form of a π ( b ln c ) a\pi (b-\ln c) , where gcd ( a , b , c ) = 1 \gcd (a,b,c)=1 , then find a + b + c a+b+c .

You may also like


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 15, 2017

The substitutions 1 x = u 2 1-x=u^2 , y = v 2 y=v^2 give I = 0 1 0 1 sin 1 ( 1 x y ) 1 y 1 y + x y d x d y = 4 0 1 0 1 u v sin 1 ( u v ) 1 v 2 1 u 2 v 2 d u d v I \; = \; \int_0^1 \int_0^1 \frac{\sin^{-1}(\sqrt{1-x}\sqrt{y})}{\sqrt{1-y}\sqrt{1-y+xy}}\,dx\,dy \; = \; 4\int_0^1 \int_0^1 \frac{uv\sin^{-1}(uv)} {\sqrt{1-v^2}\sqrt{1-u^2v^2}}\,du\,dv and so I = 4 0 1 d v 1 v 2 0 1 u v sin 1 ( u v ) 1 u 2 v 2 d u = 4 0 1 d v v 1 v 2 0 v u sin 1 u 1 u 2 d u = 4 0 1 d v v 1 v 2 { [ sin 1 u 1 u 2 ] u = 0 v + 0 v d u } = 4 0 1 d v v 1 v 2 { v 1 v 2 sin 1 v } = 4 0 1 d v 1 v 2 4 0 1 sin 1 v v d v = 4 [ sin 1 v ] 0 1 4 [ ln v sin 1 v ] 0 1 + 4 0 1 ln v 1 v 2 d v = 2 π + 0 1 w 1 2 ( 1 w ) 1 2 ln w d w = 2 π + B α ( α , β ) α = β = 1 2 = 2 π + B ( α , β ) [ ψ ( α ) ψ ( α + β ) ] α = β = 1 2 = 2 π + π ( ψ ( 1 2 ) ψ ( 1 ) ) = 2 π + π ( γ ln 4 + γ ) = 2 π ( 1 ln 2 ) \begin{array}{c}\ I & = \displaystyle 4\int_0^1 \frac{dv}{\sqrt{1-v^2}} \int_0^1 \frac{uv \sin^{-1}(uv)}{\sqrt{1-u^2v^2}}\,du \; = \; 4\int_0^1 \frac{dv}{v\sqrt{1-v^2}}\int_0^v \frac{u\sin^{-1}u}{\sqrt{1-u^2}}\,du \\ & = \displaystyle 4\int_0^1 \frac{dv}{v\sqrt{1-v^2}}\left\{ \Big[-\sin^{-1}u \sqrt{1-u^2}\Big]_{u=0}^v + \int_0^v\,du\right\} \; = \; 4\int_0^1 \frac{dv}{v\sqrt{1-v^2}}\left\{ v - \sqrt{1-v^2}\sin^{-1}v\right\} \\ & = \displaystyle 4\int_0^1 \frac{dv}{\sqrt{1-v^2}} - 4\int_0^1 \frac{\sin^{-1}v}{v}\,dv \; =\; 4\Big[\sin^{-1}v\Big]_0^1 - 4\Big[\ln v \, \sin^{-1}v\Big]_0^1 + 4\int_0^1 \frac{\ln v}{\sqrt{1-v^2}}\,dv \\ & = \displaystyle 2\pi + \int_0^1 w^{-\frac12}(1-w)^{-\frac12} \ln w\,dw \; = \; 2\pi + \frac{\partial B}{\partial \alpha}(\alpha,\beta)\Big|_{\alpha=\beta=\frac12} \\ & = \displaystyle 2\pi + B(\alpha,\beta)\big[\psi(\alpha) - \psi(\alpha+\beta)\big]\Big|_{\alpha=\beta=\frac12} \\ &= \displaystyle 2\pi + \pi\big(\psi(\tfrac12) - \psi(1)\big) \; = \; 2\pi + \pi(-\gamma - \ln4 + \gamma) \\ & = \displaystyle 2\pi(1 - \ln2) \end{array} making the answer 2 + 1 + 2 = 5 2+1+2=\boxed{5} .

Same method!!

Aditya Kumar - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...