∫ 0 1 ∫ 0 1 1 − y x y − y + 1 arcsin ( 1 − x y ) d x d y
Evaluate the double integral above. If the answer comes in the form of a π ( b − ln c ) , where g cd ( a , b , c ) = 1 , then find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
The substitutions 1 − x = u 2 , y = v 2 give I = ∫ 0 1 ∫ 0 1 1 − y 1 − y + x y sin − 1 ( 1 − x y ) d x d y = 4 ∫ 0 1 ∫ 0 1 1 − v 2 1 − u 2 v 2 u v sin − 1 ( u v ) d u d v and so I = 4 ∫ 0 1 1 − v 2 d v ∫ 0 1 1 − u 2 v 2 u v sin − 1 ( u v ) d u = 4 ∫ 0 1 v 1 − v 2 d v ∫ 0 v 1 − u 2 u sin − 1 u d u = 4 ∫ 0 1 v 1 − v 2 d v { [ − sin − 1 u 1 − u 2 ] u = 0 v + ∫ 0 v d u } = 4 ∫ 0 1 v 1 − v 2 d v { v − 1 − v 2 sin − 1 v } = 4 ∫ 0 1 1 − v 2 d v − 4 ∫ 0 1 v sin − 1 v d v = 4 [ sin − 1 v ] 0 1 − 4 [ ln v sin − 1 v ] 0 1 + 4 ∫ 0 1 1 − v 2 ln v d v = 2 π + ∫ 0 1 w − 2 1 ( 1 − w ) − 2 1 ln w d w = 2 π + ∂ α ∂ B ( α , β ) ∣ ∣ ∣ α = β = 2 1 = 2 π + B ( α , β ) [ ψ ( α ) − ψ ( α + β ) ] ∣ ∣ ∣ α = β = 2 1 = 2 π + π ( ψ ( 2 1 ) − ψ ( 1 ) ) = 2 π + π ( − γ − ln 4 + γ ) = 2 π ( 1 − ln 2 ) making the answer 2 + 1 + 2 = 5 .