Evaluate the expression

Algebra Level 1

If x = 102 10 x = \sqrt{102} - 10 , what is the value of x 2 1 10 x \frac {x^2} {1-10x} ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Hassan Chug
Nov 7, 2013

Substitute x = 102 10 x = \sqrt{102} - 10 into x 2 1 10 x \frac{x^2}{1 - 10x}

( 102 10 ) 2 1 10 ( 102 10 ) \implies \frac{(\sqrt{102} - 10)^2}{1 - 10(\sqrt{102} - 10)}

102 20 102 + 100 1 10 102 + 100 \implies \frac{102 - 20\sqrt{102} + 100}{1 - 10\sqrt{102} + 100}

202 20 102 101 10 102 \implies \frac{202 - 20\sqrt{102}}{101 - 10\sqrt{102}}

2 ( 101 10 102 ) 101 10 102 \implies \frac{2(101 - 10\sqrt{102})}{101 - 10\sqrt{102}}

2 \implies 2

nice solution

kasimayan mayan - 7 years, 7 months ago

Log in to reply

good

Syed Rehman - 7 years, 7 months ago

It was great! Thank you. :)

Nanelle Ilano - 7 years, 7 months ago

good....i like..it

Himanshu Verma - 7 years, 7 months ago

nice!

Anselmo Francia - 7 years, 7 months ago

great solution

Luis Talero - 7 years, 7 months ago

wow the thing i did is because theirs a square i cancelled the square root haha silly me

Vongola Decimo - 7 years, 7 months ago

nice

Jc Marcos - 7 years, 7 months ago

wow ! you're awesome !

Iswilma Emma - 7 years, 7 months ago

nice solution

Jaswant Singh - 7 years, 7 months ago

Given is x=\sqrt{102} - 10 Rearrange it as folowed x+10=\sqrt{102}

Squaring both sides x^2 + 2(10)(x) + 100 = 102

x^2 + 20x = 102-100 x^2 + 20x = 2

So

x^2 = 2 - 20x or x^2 = 2(1 - 10x)

Now substitute the value of x^2 in the fraction. frac {x^2}{1 - 10x}

= frac { 2(1 - 10x)}{1 - 10x} = 2

JD Rox - 7 years, 7 months ago

good

Sk Buriro - 7 years, 7 months ago

i was just solving it bt i lost it damn

radha hati - 7 years, 7 months ago
Jericho Cabrera
Nov 9, 2013

x = (sqrt(102)-10)^2/(1-10(sqrt(102)-10)) note: sqrt(102) = 10.09950494

therefore, x = 2

Christian Cortez
Nov 9, 2013

square root of 102 - 10 squared = 102-100 so the answer will be 2
1-10 (square root of 102 - 10)
multiply the number 10 .. 10x10 = 100.. then solve the close parenthesis (102-100) = 2

2 over 1-2 = 2 over 1 then i solve it 2/1 is 2

sorry for my solution .. i dont know how to explain but im so interested for solving this kind of problem.. xD hope u understand i love math :D

x^2 / (1-10x) = (V102 - 10)^2 / [1-10(V102 - 10)] = 202 - 20V102 / 101 - 10V102 = 2

Saish Talauliker
Nov 9, 2013

rearanging we get (x+10)^2=102 x^2+20x+100=102 x^2=2-20x x^2=2(1-10x)

hence given exprsn =2

Arben Osmani
Nov 8, 2013

x=sqrt(102)-10;

((sqrt(102)-10)^3)/(1-10(sqrt(102)-10)) =(102-20 sqrt(102)+100)/(1-10sqrt(102)+100) =(202-20 sqrt(102))/(101-10sqrt(102)) =(2(101-10sqrt(102))/(101-10sqrt(102)) =2

nice...

Uttam Vaghasiya - 7 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...