Evaluate the following limit (2)

Calculus Level 2

lim x 0 sin ( 5 x ) sin ( 4 x ) = ? \lim_{x \to 0} \frac {\sin (5x)}{\sin (4x)} = \ ?


The answer is 1.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Aryan Sanghi
Jul 28, 2020

We know that

lim x 0 sin x x = 1 \lim_{x\to 0}\frac{\sin x}{x} = 1

So,

lim x 0 sin 5 x sin 4 x = 5 4 lim x 0 sin 5 x 5 x sin 4 x 4 x \lim_{x\to 0}\frac{\sin{5x}}{\sin{4x}} = \frac54 \lim_{x\to 0}\frac{\frac{\sin{5x}}{5x}}{\frac{\sin{4x}}{4x}}

lim x 0 sin 5 x sin 4 x = 5 4 lim x 0 sin 5 x 5 x lim x 0 sin 4 x 4 x \lim_{x\to 0}\frac{\sin{5x}}{\sin{4x}} =\frac54 \frac{\lim_{x\to 0}\frac{\sin{5x}}{5x}}{\lim_{x\to 0}\frac{\sin{4x}}{4x}}

lim x 0 sin 5 x sin 4 x = 5 4 = 1.25 \color{#3D99F6}{\boxed{\lim_{x\to 0}\frac{\sin{5x}}{\sin{4x}} = \frac54 = 1.25}}

Oh nice method! Upvoted!

Vinayak Srivastava - 10 months, 2 weeks ago
Chew-Seong Cheong
Jul 28, 2020

Method 1: By L'Hôpital's rule

L = lim x 0 sin ( 5 x ) sin ( 4 x ) A 0/0 cases, L’H o ˆ pital’s rule applies = lim x 0 5 cos ( 5 x ) 4 cos ( 4 x ) Differentiate up and down w.r.t. x = 5 4 = 1.25 \begin{aligned} L & = \lim_{x \to 0} \frac {\sin (5x)}{\sin (4x)} & \small \blue{\text{A 0/0 cases, L'Hôpital's rule applies}} \\ & = \lim_{x \to 0} \frac {5 \cos (5x)}{ 4\cos (4x)} & \small \blue{\text{Differentiate up and down w.r.t. }x} \\ & = \frac 54 = \boxed{1.25} \end{aligned}

Method 2: By Maclaurin series

L = lim x 0 sin ( 5 x ) sin ( 4 x ) By Maclaurin series = lim x 0 5 x ( 5 x ) 3 3 ! + ( 5 x ) 5 5 ! 4 x ( 4 x ) 3 3 ! + ( 4 x ) 5 5 ! Divide up and down by x = lim x 0 5 5 3 x 2 3 ! + 5 5 x 4 5 ! 4 4 3 x 2 3 ! + 4 5 x 4 5 ! = 5 4 = 1.25 \begin{aligned} L & = \lim_{x \to 0} \frac {\sin (5x)}{\sin (4x)} & \small \blue{\text{By Maclaurin series}} \\ & = \lim_{x \to 0} \frac {5x - \frac {(5x)^3}{3!} + \frac {(5x)^5}{5!} - \cdots}{4x - \frac {(4x)^3}{3!} + \frac {(4x)^5}{5!} - \cdots} & \small \blue{\text{Divide up and down by }x} \\ & = \lim_{x \to 0} \frac {5 - \frac {5^3x^2}{3!} + \frac {5^5x^4}{5!} - \cdots}{4 - \frac {4^3x^2}{3!} + \frac {4^5x^4}{5!} - \cdots} \\ & = \frac 54 = \boxed{1.25} \end{aligned}

  • We first substitute x = 0 x=0

sin ( 5 x ) sin ( 4 x ) = 0 0 \large{\dfrac{\sin(5x)}{\sin(4x)}=\dfrac{0}{0}}

  • We get a 0 0 \dfrac{0}{0} situation, so we can apply L'Hôpital's rule.

  • We differentiate both numerator and denominator to get:

lim x 0 sin ( 5 x ) sin ( 4 x ) = d d x ( sin ( 5 x ) ) d d x ( sin ( 4 x ) ) = 5 cos ( 5 x ) 4 cos ( 4 x ) \large{\lim \limits_{x\rightarrow 0} \dfrac{\sin(5x)}{\sin(4x)} = \dfrac{\frac{d}{dx} (\sin(5x))}{\frac{d}{dx} (\sin(4x))}=\dfrac{ 5\cdot \cos(5x)}{4 \cdot \cos(4x)}}

  • Now we can substitute x = 0 x=0 and get the answer.

lim x 0 sin ( 5 x ) sin ( 4 x ) = 5 cos ( 0 ) 4 cos ( 0 ) = 5 4 = 1.25 \large{\lim \limits_{x\rightarrow 0} \dfrac{\sin(5x)}{\sin(4x)} =\dfrac{5 \cdot \cos(0)}{4 \cdot \cos(0)}=\dfrac{5}{4}=\boxed{1.25}}

James Watson
Jul 28, 2020

lim x 0 sin ( 5 x ) sin ( 4 x ) is a 0 0 situation so we can use L’Hopital’s rule and differentiate the top and bottom \lim\limits_{x\to 0} \frac{\sin(5x)}{\sin(4x)} \textrm{ is a } \frac{0}{0} \textrm{ situation so we can use L'Hopital's rule and differentiate the top and bottom}

lim x 0 d d x ( sin ( 5 x ) ) d d x ( sin ( 4 x ) ) = lim x 0 5 cos ( 5 x ) 4 cos ( 4 x ) = 5 cos ( 5 ( 0 ) ) 4 cos ( 4 ( 0 ) ) = 5 4 = 1.25 \lim\limits_{x\to 0} \frac{\frac{d}{dx}(\sin(5x))}{\frac{d}{dx}(\sin(4x))} = \lim\limits_{x\to 0} \frac{5\cos(5x)}{4\cos(4x)} = \frac{5\cos(5(0))}{4\cos(4(0))} = \boxed{\frac{5}{4}=1.25}

@James Watson , do you know any other way of solving this? I also solved it this way only.

Vinayak Srivastava - 10 months, 2 weeks ago

Log in to reply

i guess you could use really small values of x x which shows that this function approaches 1.25 1.25 but other than that, not too sure

James Watson - 10 months, 2 weeks ago

Log in to reply

No problem, this rule is nice, it solves many problems!

Vinayak Srivastava - 10 months, 2 weeks ago

@Vinayak Srivastava check out my solution to see other way. :)

Aryan Sanghi - 10 months, 2 weeks ago
Yajat Shamji
Jul 28, 2020

This may be unconventional, but this is how I did it:

Remove the sin \sin function and x x from the numerator and denominator.

Answer: 5 4 \frac{5}{4} = 1.25 = \fbox{1.25}

interesting way of evaluating limits...

James Watson - 10 months, 2 weeks ago

I like how you wrote "may" instead of "is" :)

Vinayak Srivastava - 10 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...