Secret Spice

Calculus Level 4

0 x a 1 1 + x d x \large \int_0^\infty \frac{x^{a-1}}{1+x} \, dx

For 0 < a < 1 0<a<1 , find the closed form for the integral above.

π cot ( a π ) \frac\pi{\cot(a\pi)} π tan ( a π ) \frac\pi{\tan(a\pi)} π cos ( a π ) \frac\pi{\cos(a\pi)} π sin ( a π ) \frac\pi{\sin(a\pi)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aditya Kumar
Jan 18, 2016

Alternate Solution:

Using Maclaurin series, 1 1 + x = 1 x + x 2 x 3 + x 4 + . . . \frac { 1 }{ 1+x } =1-x+{ x }^{ 2 }-{ x }^{ 3 }+{ x }^{ 4 }+...

On converting it into a beautiful summation, 1 1 + x = k = 0 Γ ( 1 + k ) k ! ( x ) k \frac { 1 }{ 1+x } =\sum _{ k=0 }^{ \infty }{ \frac { \Gamma \left( 1+k \right) }{ k! } { \left( -x \right) }^{ k } }

(You can prove it by using properties of Gamma function)

Now, the integral is: M { 1 1 + x } ( a ) M\left\{ \frac { 1 }{ 1+x } \right\} \left( a \right)

Here M{f(x)}(s) is Mellin transform of f(x) over s.

Now using Ramanujan's Master Theorem , we get 0 ( x ) a 1 1 + x d x = Γ ( a ) Γ ( 1 a ) \int _{ 0 }^{ \infty }{ \frac { { \left( x \right) }^{ a-1 } }{ 1+x } } dx=\Gamma \left( a \right) \Gamma \left( 1-a \right)

Since 0 < a < 1 0<a<1 , we can use Euler's reflection formula.

Therefore, the above integral comes out to be: π s i n ( a π ) \frac { \pi }{ sin\left( a\pi \right) }

@Pi Han Goh here's another one that uses RMT (one of the most awesome theorem)

Aditya Kumar - 5 years, 4 months ago

I = 0 x a 1 1 + x d x I = \displaystyle \int_{0}^{\infty} \dfrac{x^{a-1}}{1+x}dx

Let x = tan 2 θ x = \tan^2 \theta

d x = 2 tan θ sec 2 θ d θ dx = 2 \tan \theta \sec^2 \theta d\theta

I = 2 × 0 π 2 tan 2 a 2 θ × tan θ sec 2 θ d θ s e c 2 θ I = \displaystyle2 \times \int_{0}^{\dfrac{\pi}{2}} \tan^{2a-2}\theta \times \tan\theta \sec^2 \theta \dfrac{d\theta}{sec^2 \theta}

I = 2 × 0 π 2 sin 2 a 1 ( θ ) cos 1 2 a ( θ ) d θ \therefore I = \displaystyle 2 \times \int_{0}^{\dfrac{\pi}{2}} \sin^{2a-1}(\theta)\cos^{1-2a}(\theta)d\theta

I = 2 × β ( a , 1 a ) 2 \therefore I = \displaystyle 2 \times \dfrac{\beta(a,1-a)}{2}

I = Γ ( a ) Γ ( 1 a ) \therefore I = \displaystyle \Gamma(a) \Gamma(1-a)

Using Euler's reflection formula,

Γ ( x ) Γ ( 1 x ) = π sin π x \Gamma(x) \Gamma(1-x) = \dfrac{\pi}{\sin\pi x}

I = π sin π a \therefore I = \displaystyle \dfrac{\pi}{\sin\pi a}

Anupam Khandelwal
May 27, 2016

A logical solution to this problem Put a = 1/2 Since the function is positive in given limits and the integral has a closed form in 0 < a < 1 Hence the function cannot have infinite or zero area under the curve in X-Y plane , this leaves us out with only one option possible i.e pi/sin(a*pi).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...