Evaluate the integral

Calculus Level 2

1 e x + 1 d x = ? \int \dfrac1{e^x + 1} \, dx = \, ?

Notation: C C denotes the constant of integration.

x log ( e x + 1 ) + C x-\log { \left( { e }^{ x }+1 \right) +C } ( 1 + e x ) 2 2 + C \frac { { \left( 1+{ e }^{ x } \right) }^{ 2 } }{ 2 } +C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aly Ahmed
Jul 22, 2020

Chew-Seong Cheong
Jul 22, 2020

I = 1 e x + 1 d x = e x + 1 e x e x + 1 d x = ( 1 e x e x + 1 ) d x = x ln ( e x + 1 ) + C where C is the constant of integration. \begin{aligned} I & = \int \frac 1{e^x + 1} dx \\ & = \int \frac {e^x+1 - e^x}{e^x+1} dx \\ & = \int \left(1 - \frac {e^x}{e^x+1} \right) dx \\ & = \boxed {x - \ln(e^x +1) + \blue C} & \small \blue{\text{where }C \text{ is the constant of integration.}} \end{aligned}

Alternatively:

Since the answer options are given, we can also check which answer is correct as follows:

{ d d x ( x ln ( e x + 1 ) + C ) = 1 e x e x + 1 = 1 e x + 1 The correct answer d d x ( ( e x + 1 ) 2 2 + C ) = e x ( e x + 1 ) Not the answer \begin{cases} \dfrac d{dx} \left(x - \ln (e^x + 1) + C \right) = 1 - \dfrac {e^x}{e^x+1} = \dfrac 1{e^x+1} & \small \blue{\text{The correct answer}} \\ \dfrac d{dx} \left(\dfrac {(e^x + 1)^2}2 + C \right) = e^x(e^x+1) & \small \red{\text{Not the answer}} \end{cases}

The value of the integral is ln ( 1 1 e x + 1 ) + C = x ln ( 1 + e x ) + C \ln \left (1-\dfrac {1}{e^x+1}\right ) +C=x-\ln (1+e^x)+C , where C C is the integration constant.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...