Evaluate the limit

Calculus Level 2

lim x 0 sin 2 x sin 4 x s i n 4 x sin 8 x \lim _{ x\xrightarrow { } 0 }{ } \cfrac { \sin\quad 2x\quad -\quad \sin\quad 4x\quad }{ sin\quad 4x\quad -\quad \sin\quad 8x }


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Here is an approach that does not require L'Hopital's rule.

Using the identity sin ( 2 A ) = 2 sin ( A ) cos ( A ) \sin(2A) = 2\sin(A)\cos(A) , the limit becomes

lim x 0 sin ( 2 x ) ( 1 2 cos ( 2 x ) ) sin ( 4 x ) ( 1 2 cos ( 4 x ) ) = lim x 0 sin ( 2 x ) ( 1 2 cos ( 2 x ) ) 2 sin ( 2 x ) cos ( 2 x ) ( 1 2 cos ( 4 x ) ) = l i m x 0 1 2 cos ( 2 x ) 2 cos ( 2 x ) ( 1 2 cos ( 4 x ) ) \lim_{x \rightarrow 0} \dfrac{\sin(2x)(1 - 2\cos(2x))}{\sin(4x)(1 - 2\cos(4x))} = \lim_{x \rightarrow 0} \dfrac{\sin(2x)(1 - 2\cos(2x))}{2\sin(2x)\cos(2x)(1 - 2\cos(4x))} = lim_{x \rightarrow 0} \dfrac{1 - 2\cos(2x)}{2\cos(2x)(1 - 2\cos(4x))} .

Now we can just plug in x = 0 x = 0 to get an answer of 1 2 2 ( 1 2 ) = 1 2 = 0.5 \frac{1 - 2}{2*(1 - 2)} = \frac{1}{2} = \boxed{0.5} .

I guess this is always the best approach, i. e., removing the indetermination by elementary algebra instead of using L'Hôpital. :)

Mikael Marcondes - 6 years, 2 months ago
Pravin Dharmaraj
Apr 21, 2015

Divide both numerator and denominator by x and use the formula.

So simple.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...