Evaluate the series - 2

Calculus Level 3

Evaluate: n = 0 1 1 + n 2 \large \sum_{n=0}^{\infty}\frac{1}{1+n^2}


The answer is 2.074.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Dec 24, 2018

The Fourier series of e x e^x at x = ± π x=\pm \pi is 1 π sinh π + 2 sinh π π n = 1 1 1 + n 2 = e π + e π 2 \frac{1}{\pi}\sinh\pi+\frac{2\sinh\pi}{\pi}\sum_{n=1}^{\infty}\frac{1}{1+n^2}=\frac{e^{\pi}+e^{-\pi}}{2} Solving for n = 0 1 1 + n 2 \sum_{n=0}^{\infty}\frac{1}{1+n^2} gives 1 2 ( 1 + π coth π ) 2.07667 \frac{1}{2}(1+\pi \coth\pi) \approx \boxed{2.07667}

Chew-Seong Cheong
Dec 24, 2018

Doing it the long way (also the only way I know) using digamma function .

S = n = 0 1 1 + n 2 = n = 0 1 ( n i ) ( n + i ) = i 2 n = 0 ( 1 n + i 1 n i ) Digamma function ψ ( z + 1 ) = γ + k = 1 ( 1 k 1 k + z ) = 1 + i 2 n = 1 ( 1 n + i 1 n i ) where γ is the Euler-Mascheroni constant. = 1 + i 2 ( ψ ( 1 i ) ψ ( 1 + i ) ) Using ψ ( 1 z ) ψ ( z ) = π cot ( π z ) = 1 + i 2 ( π cot ( π i ) 1 i ) and ψ ( 1 + z ) = ψ ( z ) + 1 z = 1 + π 2 coth π 1 2 2.077 \begin{aligned} S & = \sum_{n=0}^\infty \frac 1{1+n^2} = \sum_{n=0}^\infty \frac 1{(n-i)(n+i)} \\ & = \frac i2 \sum_{\color{#3D99F6}n=0}^\infty \left(\frac 1{n+i} - \frac 1{n-i} \right) & \small \color{#3D99F6} \text{Digamma function } \psi (z+1) = - \gamma + \sum_{k=1}^\infty \left(\frac 1k - \frac 1{k+z} \right) \\ & = 1 + \frac i2 \sum_{\color{#D61F06}n=1}^\infty \left(\frac 1{n+i} - \frac 1{n-i} \right) & \small \color{#3D99F6} \text{where } \gamma \text{ is the Euler-Mascheroni constant.} \\ & = 1 + \frac i2 (\psi(1-i) -\psi (1+i)) & \small \color{#3D99F6} \text{Using } \psi (1-z) - \psi (z) = \pi \cot (\pi z) \\ & = 1 + \frac i2 \left(\pi \cot (\pi i) - \frac 1i\right) & \small \color{#3D99F6} \text{and } \psi (1+z) = \psi (z) + \frac 1z \\ & = 1 + \frac \pi 2 \coth \pi - \frac 12 \\ & \approx \boxed{2.077} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...