Evaluate the series!

Calculus Level pending

Evaluate: n = 1 1 ( 0.25 n 2 ) 2 \large \sum_{n=1}^{\infty}\frac{1}{(0.25-n^2)^2}


The answer is 1.870.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 24, 2018

S = n 1 1 ( 0.25 n 2 ) 2 = n 1 1 ( n 2 1 4 ) 2 = n 1 1 ( n 1 2 ) 2 ( n + 1 2 ) 2 = n 1 ( 1 n 1 2 1 n + 1 2 ) 2 = n 1 ( 4 ( 2 n 1 ) 2 8 ( 2 n 1 ) ( 2 n + 1 ) + 4 ( 2 n + 1 ) 2 ) = 8 n 1 1 ( 2 n 1 ) 2 4 4 n 1 ( 1 2 n 1 1 2 n + 1 ) \begin{aligned} S & = \sum_{n-1}^\infty \frac 1{(0.25-n^2)^2} = \sum_{n-1}^\infty \frac 1{\left(n^2-\frac 14\right)^2} = \sum_{n-1}^\infty \frac 1{\left(n-\frac 12 \right)^2\left(n+\frac 12\right)^2} \\ & = \sum_{n-1}^\infty \left(\frac 1{n-\frac 12} - \frac 1{n+\frac 12} \right)^2 \\ & = \sum_{n-1}^\infty \left({\color{#3D99F6}\frac 4{(2n-1)^2}} - {\color{#D61F06}\frac 8{(2n-1)(2n+1)}} + {\color{#3D99F6}\frac 4{(2n+1)^2}} \right) \\ & = {\color{#3D99F6} 8\sum_{n-1}^\infty \frac 1{(2n-1)^2} - 4} - {\color{#D61F06}4 \sum_{n-1}^\infty \left(\frac 1{2n-1} - \frac 1{2n+1} \right)} \end{aligned}

= 6 n 1 1 n 2 4 4 See note. = 6 ζ ( 2 ) 8 Riemann zeta function ζ ( s ) = k = 1 1 k 2 = 6 × π 2 6 8 and ζ ( 2 ) = π 2 6 = π 2 8 1.870 \begin{aligned} \ \ \ & = {\color{#3D99F6} 6 \sum_{n-1}^\infty \frac 1{n^2}} - 4 - \color{#D61F06} 4 & \small \color{#3D99F6} \text{See note.} \\ & = 6{\color{#3D99F6} \zeta (2)} - 8 & \small \color{#3D99F6} \text{Riemann zeta function }\zeta (s) = \sum_{k=1}^\infty \frac 1{k^2} \\ & = 6 \times {\color{#3D99F6} \frac {\pi^2}6} - 8 & \small \color{#3D99F6} \text{and }\zeta (2) = \frac {\pi^2}6 \\ & = \pi^2 - 8 \\ & \approx \boxed{1.870} \end{aligned}


Note:

n = 1 1 ( 2 n 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ( 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + ) = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + 1 2 2 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ) = 3 4 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ) = 3 4 n = 1 1 n 2 \begin{aligned} \sum_{n=1}^\infty \frac 1{(2n-1)^2} & = \frac 1{1^2} + \frac 1{3^2} + \frac 1{5^2} + \frac 1{7^2} + \frac 1{9^2} + \cdots \\ & = \frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + \cdots - \left( \frac 1{2^2} + \frac 1{4^2} + \frac 1{6^2} + \frac 1{8^2} + \cdots \right) \\ & = \frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + \cdots - \frac 1{2^2} \left( \frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + \cdots \right) \\ & = \frac 34 \left( \frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + \cdots \right) \\ & = \frac 34 \sum_{n=1}^\infty \frac 1{n^2} \end{aligned}

Otto Bretscher
Dec 24, 2018

n = 1 1 ( n 2 0.25 ) 2 = n = 1 2 ( n + 0.5 ) 2 = n = 1 8 ( 2 n + 1 ) 2 = 8 ( π 2 8 1 ) = π 2 8 1.870 \sum_{n=1}^ {\infty} \frac{1}{(n^2-0.25)^2}=\sum_{n=1}^ {\infty} \frac{2}{(n+0.5)^2}=\sum_{n=1}^ {\infty} \frac{8}{(2n+1)^2}=8\left(\frac{\pi^2}{8}-1\right)=\pi^2-8\approx \boxed{1.870} by the Basel problem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...