Evaluate the sum

Calculus Level 5

Let S = n = 1 ( 1 ) n 1 ln ( n + 1 n ) S=\sum_{n=1}^\infty (-1)^{n-1} \ln{\left(\frac{n+1}{n}\right)}

Find the closed form for S S , and enter your answer as 1 0 6 × S \lfloor 10^6\times S \rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 451582.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Gopinath No
Jul 22, 2016

\begin{aligned} \exp{(S)} &= \frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots\\ &= \prod_{n=1}^\infty \frac{2n}{2n-1}\cdot \frac{2n}{2n+1} \\ &= \frac{\pi}{2} \tag{Wallis product} \end{aligned}

Hence, 1 0 6 × S = 1 0 6 × ln ( π 2 ) = 451582 \lfloor 10^6\times S \rfloor = \lfloor 10^6\times \ln\left(\frac{\pi}{2}\right) \rfloor = 451582

I didnt understand. Not even how you got in the first line

Mr Yovan - 4 years, 10 months ago

Log in to reply

exp ( x ) \exp(x) means e x e^x . Expand the summation and apply the rule of logarithms. Then you can lookup wallis' product.

gopinath no - 4 years, 10 months ago

Can you give a proof of Wallis Product

Kushal Bose - 4 years, 10 months ago

Log in to reply

Wallis product .

Pi Han Goh - 4 years, 10 months ago
Kim Lehi Alterado
Jul 25, 2016

Relevant wiki: Wallis product

By writing out the summation, we see that, S = n = 1 ( 1 ) n 1 ln ( n + 1 n ) = ln ( 2 ) ln ( 3 2 ) + ln ( 4 3 ) ln ( 5 4 ) + ln ( 6 5 ) ln ( 7 6 ) + ln ( 8 7 ) ln ( 9 8 ) + . . . S=\sum_{n=1}^{\infty}(-1)^{n-1}\ln{\left(\frac{n+1}{n}\right)}=\ln{\left(2\right)}-\ln{\left(\frac{3}{2}\right)}+\ln{\left(\frac{4}{3}\right)}-\ln{\left(\frac{5}{4}\right)}+\ln{\left(\frac{6}{5}\right)}-\ln{\left(\frac{7}{6}\right)}+\ln{\left(\frac{8}{7}\right)}-\ln{\left(\frac{9}{8}\right)}+... Applying the logarithmic product and quotient rules: n = 1 ( 1 ) n 1 ln ( n + 1 n ) = ln ( 4 3 × 16 15 × 36 35 × 64 63 × . . . ) = ln ( n = 1 4 n 2 4 n 2 1 ) = ln ( n = 1 2 n 2 n 1 × 2 n 2 n + 1 ) \sum_{n=1}^{\infty}(-1)^{n-1}\ln{\left(\frac{n+1}{n}\right)}=\ln{\left(\frac{4}{3}\times\frac{16}{15}\times\frac{36}{35}\times\frac{64}{63}\times...\right)}=\ln{\left(\prod_{n=1}^{\infty}\frac{4n^{2}}{4n^{2}-1}\right)}=\ln{\left(\prod_{n=1}^{\infty}\frac{2n}{2n-1}\times\frac{2n}{2n+1}\right)} Evaluating the product gives π 2 \frac{\pi}{2} (Note: It is actually the Wallis' product), so n = 1 ( 1 ) n 1 ln ( n + 1 n ) = ln ( π 2 ) \sum_{n=1}^{\infty}(-1)^{n-1}\ln{\left(\frac{n+1}{n}\right)}=\ln{\left(\frac{\pi}{2}\right)} 1 0 6 × S = 1 0 6 × ln ( π 2 ) = 451582.705289 = 451582 \therefore\lfloor10^{6}\times S\rfloor=\lfloor10^{6}\times\ln{\left(\frac{\pi}{2}\right)}\rfloor=\lfloor451582.705289\rfloor=\boxed{451582}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...