Evaluate this limit without using L' hospital rule

Calculus Level 3

lim x π 4 4 2 ( sin x + cos x ) 5 1 sin 2 x = ? \large \lim _{ x\rightarrow \frac \pi 4 }{ \dfrac { 4\sqrt { 2 } -{ (\sin { x } +\cos { x } ) }^{ 5 } }{ 1-\sin { 2x } } } = \, ?

3 2 3\sqrt { 2 } 2 2 2\sqrt { 2 } 5 2 5\sqrt { 2 } 4 5 4\sqrt { 5 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 21, 2019

L = lim x π 4 4 2 ( sin x + cos x ) 5 1 sin 2 x = lim x π 4 4 2 4 2 sin 5 ( x + π 4 ) 1 sin 2 x Let u = x + π 4 = lim u π 2 4 2 ( 1 sin 5 u ) 1 + cos 2 u = lim u π 2 2 2 ( 1 sin 5 u ) cos 2 u A 0/0 case, L’H o ˆ pital’s rule applies = lim u π 2 10 2 sin 4 u cos x 2 cos u sin u Differentiate up and down w.r.t. u = lim u π 2 5 2 sin 3 u = 5 2 \begin{aligned} L & = \lim_{x \to \frac \pi 4} \frac {4\sqrt 2-(\sin x+\cos x)^5}{1-\sin 2x} \\ & = \lim_{x \to \frac \pi 4} \frac {4\sqrt 2- 4\sqrt 2 \sin^5 \left(x+\frac \pi 4\right)}{1-\sin 2x} & \small \color{#3D99F6} \text{Let }u = x + \frac \pi 4 \\ & = \lim_{u \to \frac \pi 2} \frac {4\sqrt 2 (1 - \sin^5 u)}{1+\cos 2u} \\ & = \lim_{u \to \frac \pi 2} \frac {2\sqrt 2 (1 - \sin^5 u)}{\cos^2 u} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies} \\ & = \lim_{u \to \frac \pi 2} \frac {-10\sqrt 2 \sin^4 u \cos x}{-2\cos u\sin u} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }u \\ & = \lim_{u \to \frac \pi 2} 5\sqrt 2 \sin^3 u \\ & = \boxed {5\sqrt 2} \end{aligned}


Reference: L'Hôpital's rule

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...