Evaluating a Function

Algebra Level 5

The function f f from the real numbers to the real numbers satisfies f ( 1 ) = 4 f(1) = 4 , and

f ( x + y ) = ( 1 + y x + 1 ) f ( x ) + ( 1 + x y + 1 ) f ( y ) + x 2 y + x y + x y 2 , \begin{aligned} f(x+y) = & \left(1 + \frac {y}{x+1}\right) f(x) + \left(1 + \frac {x}{y+1} \right) f(y) \\ & + x^2y + xy + xy^2, \end{aligned}

for x , y 1 x, y \neq -1 , x , y x, y real numbers. If f ( 5 3 ) = a b f \left( \frac {5}{3} \right)=\frac {a}{b} , where a a and b b are coprime positive integers, what is the value of a + b a+b ?


The answer is 307.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Marcell Simkó
May 20, 2014

With f ( 1 ) f(1) given, we can calculate f ( n ) f(n) for all n N , n 1 n\in\mathbb{N}, n\geq1 using the f ( x + y ) f(x+y) formula inductively, with x = n 1 x=n-1 and y = 1 y=1 .
This gives f ( 5 ) = 120 f(5)=120 .

Similarly, we can express f ( n x ) f(nx) from only x x and f ( x ) f(x) , substituting y = ( n 1 ) x y=(n-1)x into the addition formula. This gives a slightly complicated, but manageable equation for f ( 3 x ) f(3x) . Substituting x = 5 3 x=\frac53 the only unknown term is f ( 5 3 ) f(\frac53) , which then can be easily calculated. f ( 5 3 ) = 280 27 f(\frac53)=\frac{280}{27} , so the solution is 280 + 27 = 307 280+27=307 .

Some details are omitted, but the solution is very nice.

Calvin Lin Staff - 7 years ago
James Aaronson
May 20, 2014

We start by dividing through by ( x + y + 1 ) (x+y+1) , noting that if x + y = 1 x + y = -1 , then f ( 1 ) = 0 f(-1) = 0 .

This yields f ( x + y ) x + y + 1 = f ( x ) x + 1 + f ( y ) y + 1 + x y \frac{f(x+y)}{x+y+1} = \frac{f(x)}{x+1} + \frac{f(y)}{y+1} + xy , so we can simplify this by forcing f ( x ) = ( x + 1 ) g ( x ) f(x) = (x+1)g(x) to define the function g g . This means that g ( x + y ) = g ( x ) + g ( y ) + x y g(x+y) = g(x) + g(y) + xy .

The next move may seem magic, so here is a motivation; x = y = 0 x = y = 0 gives g ( 0 ) = 0 g(0) = 0 , and y = x y = -x gives x 2 = g ( x ) + g ( x ) x^2 = g(x) + g(-x) . So we know that g ( x ) g(x) is x 2 2 \frac{x^2}{2} plus an odd function h ( x ) h(x) :

If g ( x ) = h ( x ) + x 2 2 g(x) = h(x) + \frac{x^2}{2} , then our equation reduces to h ( x + y ) = h ( x ) + h ( y ) h(x + y) = h(x) + h(y) .

This is the Cauchy equation , and its solution is well known; on the rationals, at least, we know that h ( x ) = k x h(x) = kx for some constant k k .

Returning to f f , we see that f ( x ) = 1 2 x ( x + 1 ) ( x + k ) f(x) = \frac{1}{2}x(x+1)(x+k) on the rationals. Substituting in x = 1 x = 1 gives k = 3 k = 3 , and substituting in x = 5 3 x = \frac{5}{3} gives an answer of f ( x ) = 280 27 f(x) = \frac{280}{27} .

Ryan Phua
May 20, 2014

On first glance, one will notice that 5 3 = 1 + 2 3 \frac {5}{3} = 1+\frac {2}{3} . So, to find f ( 5 3 ) f(\frac {5}{3}) , the only unknown that needs to be found is f ( 2 3 ) f(\frac {2}{3}) , since f ( 1 ) = 4 f(1) = 4 is already given.

To start off, it can be seen that f ( 1 ) f(1) can be rewritten in the form of f ( x + y ) f(x+y) , where x = 1 3 x=\frac {1}{3} and y = 2 3 y=\frac {2}{3} .

Substituting the variables into the function and simplifying,

f ( 1 3 + 2 3 ) = ( 1 + 2 3 1 3 + 1 ) f ( 1 3 ) + ( 1 + 1 3 2 3 + 1 ) f ( 2 3 ) + ( 1 3 ) 2 ( 2 3 ) + ( 1 3 ) ( 2 3 ) + ( 1 3 ) ( 2 3 ) 2 = 4 f(\frac {1}{3} + \frac {2}{3}) = (1+ \frac {\frac{2}{3}}{\frac {1}{3}+1})f(\frac {1}{3})+ (1+ \frac {\frac{1}{3}}{\frac {2}{3}+1})f(\frac {2}{3})+(\frac {1}{3})^2(\frac {2}{3})+(\frac {1}{3})(\frac {2}{3})+(\frac {1}{3})(\frac {2}{3})^2 = 4

3 2 f ( 1 3 ) + 6 5 f ( 2 3 ) + 2 27 + 2 9 + 4 27 = 4 {\frac {3}{2}}f(\frac {1}{3})+ {\frac {6}{5}}f(\frac {2}{3})+\frac {2}{27}+\frac {2}{9}+\frac {4}{27} = 4

At the end, equation 1 is obtained: 3 2 f ( 1 3 ) + 6 5 f ( 2 3 ) = 32 9 {\frac {3}{2}}f(\frac {1}{3})+ {\frac {6}{5}}f(\frac {2}{3}) = \frac {32}{9}

At this point, we need another equation to solve for the value of f ( 2 3 ) f(\frac {2}{3}) . This is conveniently provided by setting x + y = 2 3 x+y=\frac {2}{3} , where x = y = 1 3 x=y=\frac {1}{3} .

Substituting these values into the function and simplying, we obtain:

f ( 1 3 + 1 3 ) = ( 1 + 1 3 1 3 + 1 ) f ( 1 3 ) + ( 1 + 1 3 1 3 + 1 ) f ( 1 3 ) + ( 1 3 ) 2 ( 1 3 ) + ( 1 3 ) ( 1 3 ) + ( 1 3 ) ( 1 3 ) 2 f(\frac {1}{3} + \frac {1}{3}) = (1+ \frac {\frac{1}{3}}{\frac {1}{3}+1})f(\frac {1}{3})+ (1+ \frac {\frac{1}{3}}{\frac {1}{3}+1})f(\frac {1}{3})+(\frac {1}{3})^2(\frac {1}{3})+(\frac {1}{3})(\frac {1}{3})+(\frac {1}{3})(\frac {1}{3})^2

f ( 2 3 ) = 5 4 f ( 1 3 ) + 5 4 f ( 1 3 ) + 1 27 + 1 9 + 1 27 f(\frac {2}{3}) = {\frac{5}{4}}f(\frac {1}{3})+ {\frac{5}{4}}f(\frac {1}{3})+\frac {1}{27}+\frac {1}{9}+\frac {1}{27}

Equation 2 is then obtained: f ( 2 3 ) = 5 2 f ( 1 3 ) + 5 27 f(\frac {2}{3})= {\frac{5}{2}}f(\frac {1}{3})+\frac {5}{27}

By substituting equation 2 into equation 1, we can find the value of f ( 1 3 ) f(\frac {1}{3}) :

3 2 f ( 1 3 ) + 6 5 ( 5 2 f ( 1 3 ) + 5 27 ) = 32 9 {\frac {3}{2}}f(\frac {1}{3})+ {\frac {6}{5}}({\frac{5}{2}}f(\frac {1}{3})+\frac {5}{27})=\frac {32}{9}

3 2 f ( 1 3 ) + 3 f ( 1 3 ) + 2 9 = 32 9 {\frac {3}{2}}f(\frac {1}{3})+ {3}f(\frac {1}{3})+\frac {2}{9} = \frac {32}{9}

9 2 f ( 1 3 ) = 10 3 {\frac {9}{2}}f(\frac {1}{3})=\frac {10}{3}

f ( 1 3 ) = 20 27 \Rightarrow f(\frac {1}{3}) = {\frac {20}{27}}

The value of f ( 1 3 ) f(\frac {1}{3}) can then be substituted into equation 2 to find the value of f ( 2 3 ) f(\frac {2}{3}) :

f ( 2 3 ) = 5 2 ( 20 27 ) + 5 27 f(\frac {2}{3})= {\frac {5}{2}}(\frac {20}{27})+\frac {5}{27}

= 50 27 + 5 27 = 55 27 =\frac {50}{27} + \frac {5}{27} = \frac {55}{27}

Finally, simply substitute the values x = 1 x=1 , y = 2 3 y=\frac {2}{3} , f ( 1 ) = 4 f(1)=4 and f ( 2 3 ) = 55 27 f(\frac {2}{3})=\frac {55}{27} into the function to find the value of f ( 5 3 ) f(\frac {5}{3}) :

f ( 1 + 2 3 ) = ( 1 + 2 3 1 + 1 ) f ( 1 ) + ( 1 + 1 2 3 + 1 ) f ( 2 3 ) + ( 1 ) 2 ( 2 3 ) + ( 1 ) ( 2 3 ) + ( 1 ) ( 2 3 ) 2 f(1 + \frac {2}{3}) = (1+ \frac {\frac{2}{3}}{{1+1}}){f(1)}+ (1+ \frac {1}{\frac {2}{3}+1}){f(\frac {2}{3})}+(1)^2(\frac {2}{3})+(1)(\frac {2}{3})+(1)(\frac {2}{3})^2

f ( 5 3 ) = 4 3 ( 4 ) + 8 5 ( 55 27 ) + 2 3 + 2 3 + 4 9 f(\frac {5}{3}) = {\frac {4}{3}}(4)+ {\frac {8}{5}}(\frac {55}{27})+\frac {2}{3}+\frac {2}{3}+\frac {4}{9}

= 16 3 + 88 27 + 16 9 =\frac {16}{3} + \frac {88}{27} + \frac {16}{9}

= 280 27 =\frac {280}{27}

Thus, the answer is 280 + 27 = 307 280+27=307 .

Most submitted correct solutions used the same strategy: set up two equations for f(1/3) and f(2/3), using 1/3+1/3=2/3 and 1/3=2/3=2, then finding f(5/3).

Other correct solutions included a version of the suggested solution and a solution when one first finds f(5), then finds f(5) in terms of unknown f(5/3), then solves for f(5/3).

One mistake to avoid: a formula for f(x) proven for integer x cannot be applied to rational x.

Calvin Lin Staff - 7 years ago
Kevin Anderson
May 20, 2014

Substitute x = 1/3 and y = 2/3,

f(1) = (3/2) f(1/3) + (6/5) f(2/3) + 4/9

(6/5) f(2/3) = 32/9 - (3/2) f(1/3)

f(2/3) = 80/27 - (5/4)*f(1/3) .... (1)

Then substitute x = y = 1/3,

f(2/3) = (5/2)*f(1/3) + 5/27

(5/2)*f(1/3) = f(2/3) - 5/27

f(1/3) = (2/5)*f(2/3) - 2/27

Substitute this form to (1)

f(2/3) = 80/27 - (5/4)((2/5)*f(2/3) - 2/27)

f(2/3) = 165/54 - (1/2)*f(2/3)

(3/2)*f(2/3) = 165/54

f(2/3) = 55/27

Substitute x = 2/3 and y = 1,

f(5/3) = (8/5) f(2/3) + (4/3) f(1) + 16/9

f(5/3) = 88/27 + 16/3 + 16/9

f(5/3) = 280/27

Caleb Wagner
May 20, 2014

If we substitute x = 1 x = 1 and y = 1 y = 1 into the given equation and simplify, we get:

f ( 2 ) = 3 f ( 1 ) + 3 f(2) = 3f(1)+3

Since f ( 1 ) = 4 f(1) = 4 , we know that f ( 2 ) = 15 f(2) = 15 .

Now let x = 1 3 x = \frac{1}{3} and y = 2 3 y = \frac{2}{3} . We get:

f ( 1 ) = 4 = 3 2 f ( 1 3 ) + 6 5 f ( 2 3 ) + 4 9 f(1) = 4 = \frac{3}{2}f( \frac{1}{3} ) + \frac{6}{5}f( \frac{2}{3} ) + \frac{4}{9} ...........eqt (1)

Now let x = 5 3 x= \frac{5}{3} and y = 1 3 y = \frac{1}{3} . Now we get:

f ( 2 ) = 15 = 9 8 f ( 5 3 ) + 9 4 f ( 1 3 ) + 5 3 f(2) = 15 = \frac{9}{8}f( \frac{5}{3} ) + \frac{9}{4}f( \frac{1}{3} ) + \frac{5}{3} ...........eqt(2)

Finally, let x = 1 3 x = \frac{1}{3} and y = 1 3 y = \frac{1}{3} . Substitution gives:

f ( 2 3 ) = 5 2 f ( 1 3 ) + 5 27 f( \frac{2}{3} ) = \frac{5}{2}f( \frac{1}{3} ) + \frac{5}{27} ............eqt(3)

Equations (1), (2), and (3) constitute a system of three equations in the three unknowns f ( 1 3 ) f( \frac{1}{3} ) , f ( 2 3 ) f( \frac{2}{3} ) , and f ( 5 3 ) f( \frac{5}{3} ) . After some straightforward algebra, we obtain:

f ( 1 3 ) = 20 27 f ( 2 3 ) = 55 27 f ( 5 3 ) = 280 27 f( \frac{1}{3} ) = \frac{20}{27} \\ f( \frac{2}{3} ) = \frac{55}{27} \\ f( \frac{5}{3} ) = \frac{280}{27}

So our answer is 280 + 27 = 307 280 + 27 = 307 .

Zi Song Yeoh
May 20, 2014

f ( x + y ) = ( x + y + 1 ) [ f ( x ) x + 1 + f ( y ) y + 1 + x y ] f(x + y) = (x + y + 1)[\frac{f(x)}{x + 1} + \frac{f(y)}{y + 1} + xy] .

Substituting y = 1 y = 1 gives f ( x + 1 ) = ( x + 2 ) [ f ( x ) x + 1 + x + 2 ] f(x + 1) = (x + 2)[\frac{f(x)}{x + 1} + x + 2] . We claim that if n N n \in \mathbb{N} , the. f ( n ) = ( n + 1 ) [ ( n + 2 ) ( n + 3 ) 2 1 ] f(n) = (n + 1)[\frac{(n + 2)(n + 3)}{2} - 1] . Base case is clearly established. Inductive step, we claim that f ( n + 1 ) = ( n + 2 ) [ ( n + 2 ) ( n + 3 ) 2 1 ] f(n + 1) = (n + 2)[\frac{(n + 2)(n + 3)}{2} - 1] .

f ( n + 1 ) = ( n + 2 ) [ f ( n ) n + 1 + n + 2 ] = ( n + 2 ) ( n + 4 ) ( n + 1 ) 2 = ( n + 2 ) [ ( n + 2 ) ( n + 3 ) 2 1 ] f(n + 1) = (n + 2)[\frac{f(n)}{n + 1} + n + 2] = (n + 2)\frac{(n + 4)(n + 1)}{2} = (n + 2)[\frac{(n + 2)(n + 3)}{2} - 1] . This establishes our claim.

Now, f ( 2 x ) = ( 2 x + 1 ) [ 2 f ( x ) x + 1 + x 2 ] , f ( 3 x ) = ( 3 x + 1 ) [ f ( x ) x + 1 + f ( 2 x ) 2 x + 1 + 2 x 2 ] f(2x) = (2x + 1)[\frac{2f(x)}{x + 1} + x^{2}], f(3x) = (3x + 1)[\frac{f(x)}{x + 1} + \frac{f(2x)}{2x + 1} + 2x^{2}] . Substituting x = y = 0 x = y = 0 gives f ( 0 ) = 0 f(0) = 0 . Substituting x = 1 x = 1 , f ( 1 ) = 2 [ f ( 1 3 ) 4 3 + f ( 2 3 ) 5 3 + 2 9 ] f(1) = 2[\frac{f(\frac{1}{3})}{\frac{4}{3}} + \frac{f(\frac{2}{3})}{\frac{5}{3}} + \frac{2}{9}] . Let f ( 1 3 ) = a , f ( 2 3 ) = b f(\frac{1}{3}) = a, f(\frac{2}{3}) = b . Then substituting x = 1 3 x = \frac{1}{3} in the f ( 2 x ) f(2x) equation gives 5 2 a b = 5 27 , 3 4 a + 3 5 b = 16 9 \frac{5}{2}a - b = -\frac{5}{27} , \frac{3}{4}a + \frac{3}{5}b = \frac{16}{9} . Solving for b gives b = 55 27 b = \frac{55}{27} . Substituting and solving for f ( 5 3 ) f(\frac{5}{3}) in the f ( n + 1 ) f(n + 1) equation above gives f ( 5 3 ) = 280 27 f(\frac{5}{3}) = \frac{280}{27} and the answer is 307 307 .

" Substituting x = 1 x = 1 ," typo: x=1/3 was meant

Calvin Lin Staff - 7 years ago
Zanial Firdaus
May 20, 2014

Given that

f ( x + y ) = ( 1 + y x + 1 ) f ( x ) + ( 1 + x y + 1 ) f ( y ) + x 2 y + x y + x y 2 f(x+y) = ( 1 + \frac {y}{x+1}) f(x) + (1 + \frac {x}{y+1}) f(y) + x^2y + xy + xy^2

f ( x + y ) = ( x + 1 + y x + 1 ) f ( x ) + ( y + 1 + x y + 1 ) f ( y ) + x 2 y + x y 2 + x y f(x+y) = ( \frac {x+1+y}{x+1}) f(x) + ( \frac {y+1+x}{y+1}) f(y) + x^2y + xy^2 + xy

f ( x + y ) = ( x + y + 1 x + 1 ) f ( x ) + ( x + y + 1 y + 1 ) f ( y ) + x y ( x + y + 1 ) f(x+y) = ( \frac {x+y+1}{x+1}) f(x) + ( \frac {x+y+1}{y+1}) f(y) + xy(x+y+1)

f ( x + y ) = ( x + y + 1 ) ( f ( x ) x + 1 + f ( y ) y + 1 + x y ) f(x+y) = (x+y+1)(\frac {f(x)}{x+1} + \frac {f(y)}{y+1} + xy)

Since f ( 1 ) = 4 f(1) = 4 , we could manipulate the function so that

f ( 1 3 + 2 3 ) = 4 f(\frac {1}{3} + \frac {2}{3}) = 4

( 1 3 + 2 3 + 1 ) ( f ( 1 3 ) 1 3 + 1 + f ( 2 3 ) 2 3 + 1 + ( 1 3 ) ( 2 3 ) ) = 4 (\frac {1}{3}+\frac {2}{3}+1)(\frac {f(\frac {1}{3})}{\frac {1}{3}+1} + \frac {f(\frac {2}{3})}{\frac {2}{3}+1} + (\frac {1}{3})(\frac {2}{3})) = 4

( 2 ) ( f ( 1 3 ) 4 3 + f ( 2 3 ) 5 3 + 2 9 ) = 4 (2)(\frac {f(\frac {1}{3})}{\frac {4}{3}} + \frac {f(\frac {2}{3})}{\frac {5}{3}} + \frac {2}{9}) = 4

( 2 ) ( 3 4 f ( 1 3 ) + 3 5 f ( 2 3 ) + 2 9 ) = 4 (2)(\frac {3}{4} f(\frac {1}{3}) + \frac {3}{5} f(\frac {2}{3}) + \frac {2}{9}) = 4

3 4 f ( 1 3 ) + 3 5 f ( 2 3 ) + 2 9 = 2 \frac {3}{4} f(\frac {1}{3}) + \frac {3}{5} f(\frac {2}{3}) + \frac {2}{9} = 2

3 4 f ( 1 3 ) + 3 5 f ( 2 3 ) = 2 2 9 \frac {3}{4} f(\frac {1}{3}) + \frac {3}{5} f(\frac {2}{3}) = 2 - \frac {2}{9}

3 4 f ( 1 3 ) + 3 5 f ( 2 3 ) = 16 9 . . . 1 ) \frac {3}{4} f(\frac {1}{3}) + \frac {3}{5} f(\frac {2}{3}) = \frac {16}{9} . . . 1)

From another way, we also could manipulate the function so that f ( 1 3 + 1 3 ) = ( 1 3 + 1 3 + 1 ) ( f ( 1 3 ) 1 3 + 1 + f ( 1 3 ) 1 3 + 1 + ( 1 3 ) ( 1 3 ) ) f(\frac {1}{3} + \frac {1}{3}) = (\frac {1}{3}+\frac {1}{3}+1)(\frac {f(\frac {1}{3})}{\frac {1}{3}+1} + \frac {f(\frac {1}{3})}{\frac {1}{3}+1} + (\frac {1}{3})(\frac {1}{3}))

f ( 2 3 ) = ( 5 3 ) ( f ( 1 3 ) 4 3 + f ( 1 3 ) 4 3 + 1 9 ) f(\frac {2}{3}) = (\frac {5}{3})(\frac {f(\frac {1}{3})}{\frac {4}{3}} + \frac {f(\frac {1}{3})}{\frac {4}{3}} + \frac {1}{9})

f ( 2 3 ) = ( 5 3 ) ( 3 4 f ( 1 3 ) + 3 4 f ( 1 3 ) + 1 9 ) f(\frac {2}{3}) = (\frac {5}{3})(\frac {3}{4} f(\frac {1}{3}) + \frac {3}{4} f(\frac {1}{3}) + \frac {1}{9})

( 3 5 ) f ( 2 3 ) = 3 4 f ( 1 3 ) + 3 4 f ( 1 3 ) + 1 9 (\frac {3}{5}) f(\frac {2}{3}) = \frac {3}{4} f(\frac {1}{3}) + \frac {3}{4} f(\frac {1}{3}) + \frac {1}{9}

( 3 5 ) f ( 2 3 ) = 3 2 f ( 1 3 ) + 1 9 (\frac {3}{5}) f(\frac {2}{3}) = \frac {3}{2} f(\frac {1}{3}) + \frac {1}{9}

( 3 5 ) f ( 2 3 ) 1 9 = 3 2 f ( 1 3 ) (\frac {3}{5}) f(\frac {2}{3}) - \frac {1}{9} = \frac {3}{2} f(\frac {1}{3})

3 2 f ( 1 3 ) = ( 3 5 ) f ( 2 3 ) 1 9 \frac {3}{2} f(\frac {1}{3}) = (\frac {3}{5}) f(\frac {2}{3}) - \frac {1}{9}

f ( 1 3 ) = ( 2 3 ) ( 3 5 f ( 2 3 ) 1 9 ) f(\frac {1}{3}) = (\frac {2}{3})(\frac {3}{5} f(\frac {2}{3}) - \frac {1}{9})

f ( 1 3 ) = 2 5 f ( 2 3 ) 2 27 . . . 2 ) f(\frac {1}{3}) = \frac {2}{5} f(\frac {2}{3}) - \frac {2}{27} . . . 2)

By combining equation 1) and 2), we got that ( 3 4 ) ( 2 5 f ( 2 3 ) 2 27 ) + 3 5 f ( 2 3 ) = 16 9 (\frac {3}{4})(\frac {2}{5} f(\frac {2}{3}) - \frac {2}{27}) + \frac {3}{5} f(\frac {2}{3}) = \frac {16}{9}

3 10 f ( 2 3 ) 1 18 + 6 10 f ( 2 3 ) = 16 9 \frac {3}{10} f(\frac {2}{3}) - \frac {1}{18} + \frac {6}{10} f(\frac {2}{3}) = \frac {16}{9}

9 10 f ( 2 3 ) = 32 18 + 1 18 \frac {9}{10} f(\frac {2}{3}) = \frac {32}{18} + \frac {1}{18}

9 10 f ( 2 3 ) = 33 18 \frac {9}{10} f(\frac {2}{3}) = \frac {33}{18}

f ( 2 3 ) = ( 10 9 ) ( 33 18 ) f(\frac {2}{3}) = (\frac {10}{9})(\frac {33}{18})

f ( 2 3 ) = 55 27 . . . 3 ) f(\frac {2}{3}) = \frac {55}{27} . . . 3)

Now, we have f ( 1 ) = 4 f(1) = 4 and f ( 2 3 ) = 55 27 f(\frac {2}{3}) = \frac {55}{27}

Hence,

f ( 1 + 2 3 ) = ( 1 + 2 3 + 1 ) ( f ( 1 ) 1 + 1 + f ( 2 3 ) 2 3 + 1 + ( 1 ) ( 2 3 ) ) f(1+\frac {2}{3}) = (1+\frac {2}{3}+1)(\frac {f(1)}{1+1} + \frac {f(\frac {2}{3})}{\frac {2}{3}+1} + (1)(\frac {2}{3}))

f ( 5 3 ) = ( 8 3 ) ( f ( 1 ) 2 + f ( 2 3 ) 5 3 + 2 3 ) f(\frac {5}{3}) = (\frac {8}{3})(\frac {f(1)}{2} + \frac {f(\frac {2}{3})}{\frac {5}{3}} + \frac {2}{3})

f ( 5 3 ) = ( 8 3 ) ( 4 2 + 55 27 5 3 + 2 3 ) f(\frac {5}{3}) = (\frac {8}{3})(\frac {4}{2} + \frac {\frac {55}{27}}{\frac {5}{3}} + \frac {2}{3})

f ( 5 3 ) = ( 8 3 ) ( 2 + 11 9 + 2 3 ) f(\frac {5}{3}) = (\frac {8}{3})(2 + \frac {11}{9} + \frac {2}{3})

f ( 5 3 ) = ( 8 3 ) ( 18 9 + 11 9 + 6 9 ) f(\frac {5}{3}) = (\frac {8}{3})(\frac {18}{9} + \frac {11}{9} + \frac {6}{9})

f ( 5 3 ) = ( 8 3 ) ( 35 9 ) f(\frac {5}{3}) = (\frac {8}{3})(\frac {35}{9})

f ( 5 3 ) = 280 27 f(\frac {5}{3}) = \frac {280}{27}

Because 280 and 27 are coprime positive integers, then a = 280 and b = 27 Thus, the value of a + b = 280 + 27 = 307

Yuchen Liu
May 20, 2014

f(2/3)=(1/3+1/3)=(1+(1/3)/(1/3+1))f(1/3)+(1+(1/3)/(1/3+1))f(1/3)+1/27+1/9+1/27; simplifying it, we obtain: f(2/3)=(5/2)f(1/3)+5/27-----equation (1) since the question tells us that f(1)=4, we can rewrite it as f(1)=f(1/3+2/3)=4 from which we can get: f(1/3+2/3)=(1+(2/3)/(1/3+1))f(1/3)+(1+(1/3)/(2/3+1))f(2/3)+2/27+2/9+4/27; simplifying it, (3/2)f(1/3)+(6/5)f(2/3)+4/9=4------ equation (2) solve the two equations simultaneously, we get, f(1/3)=20/27, f(2/3)=55/27 since we are finding the value of f(5/3), which is equivalent to f(2/3+1) so f(5/3)=f(2/3+1) =(1+1/(2/3+1))f(2/3)+(1+(2/3)/(1+1))f(1)+4/9+2/3+2/3 =(8/5)f(2/3)+(4/3)f(1)+16/9 =(8/5)(55/27)+(4/3)(4)+16/9 = 280/27 hence a+b=280+27=307

P.S: I am not very familiar with the formatting methods since this is the first time I ever submit a solution. Sorry if the traditional way of presenting my answer causes you any trouble ;(

Alex Damian
May 20, 2014

We wish to find f ( 5 / 3 ) f(5/3) . Write this as f ( 2 1 / 3 ) f(2-1/3) .

f ( 2 + ( 1 / 3 ) ) = ( 1 1 / 9 ) f ( 2 ) + ( 1 + 3 ) f ( 1 / 3 ) 4 / 3 2 / 3 + 2 / 9 = 8 f ( 2 ) / 9 + 4 f ( 1 / 3 ) 16 / 9 \begin{array} {lcl} f(2+(-1/3)) & = & (1-1/9)f(2)+(1+3)f(-1/3)-4/3-2/3+2/9 \\ & = & 8f(2)/9+4f(-1/3)-16/9 \end{array}

Calculate f ( 2 ) f(2) as f ( 1 + 1 ) = 6 + 6 + 1 + 1 + 1 = 15 f(1+1)=6+6+1+1+1=15

f ( 2 + ( 1 / 3 ) ) = 8 f ( 2 ) / 9 + 4 f ( 1 / 3 ) 16 / 9 = 8 15 / 9 + 4 f ( 1 / 3 ) 16 / 9 = 104 / 9 + 4 f ( 1 / 3 ) \begin{array} {lcl} f(2+(-1/3)) & = & 8f(2)/9+4f(-1/3)-16/9 \\ & = & 8*15/9+4f(-1/3)-16/9 \\ & = &104/9+4f(-1/3) \end{array}

Now calculate f ( 0 ) f(0) as f ( 0 + 1 ) = f ( 1 ) f(0+1)=f(1)

f ( 1 ) = 2 f ( 0 ) + f ( 1 ) f ( 0 ) = 0 f(1)=2f(0)+f(1) \\ f(0)=0

We now write f ( 0 ) = f ( 1 / 3 + ( 1 / 3 ) ) = 0 f(0)=f(1/3+(-1/3))=0

0 = 3 f ( 1 / 3 ) / 4 + 3 f ( 1 / 3 ) / 2 1 / 9 2 / 3 ( 1 / 9 3 f ( 1 / 3 ) / 4 ) = f ( 1 / 3 ) 2 / 27 f ( 1 / 3 ) / 2 = f ( 1 / 3 ) 0 = 3f(1/3)/4+3f(-1/3)/2-1/9 \\ 2/3*(1/9-3f(1/3)/4)=f(-1/3) \\ 2/27-f(1/3)/2=f(-1/3)

Now write f ( 1 / 3 + 2 / 3 ) = f ( 1 ) = 4 f(1/3+2/3)=f(1)=4

3 f ( 1 / 3 ) / 2 + 6 f ( 2 / 3 ) / 5 + 4 / 9 = 4 3 f ( 1 / 3 ) / 2 + 6 f ( 2 / 3 ) / 5 = 32 / 9 3f(1/3)/2+6f(2/3)/5+4/9=4\\ 3f(1/3)/2+6f(2/3)/5=32/9

Now write f ( 1 / 3 + 2 / 3 ) = f ( 1 / 3 ) f(-1/3+2/3)=f(1/3)

2 f ( 1 / 3 ) + 4 f ( 2 / 3 ) / 5 8 / 27 = f ( 1 / 3 ) 2f(-1/3)+4f(2/3)/5-8/27=f(1/3)

Now substitute the value we found for f ( 1 / 3 ) f(-1/3)

4 / 27 f ( 1 / 3 ) + 4 f ( 2 / 3 ) / 5 8 / 27 = f ( 1 / 3 ) 4 / 27 + 4 f ( 2 / 3 ) = 2 f ( 1 / 3 ) 4/27-f(1/3)+4f(2/3)/5-8/27=f(1/3) \\ -4/27+4f(2/3)=2f(1/3)

Recall we found that:

3 f ( 1 / 3 ) / 2 + 6 f ( 2 / 3 ) / 5 = 32 / 9 3f(1/3)/2+6f(2/3)/5=32/9

So we have the system of equations:

{ 4 / 27 + 4 f ( 2 / 3 ) = 2 f ( 1 / 3 ) 3 f ( 1 / 3 ) / 2 + 6 f ( 2 / 3 ) / 5 = 32 / 9 \begin{cases} -4/27+4f(2/3)=2f(1/3) \\ 3f(1/3)/2+6f(2/3)/5=32/9 \\ \end{cases}

Going through the algebra and solving for f ( 1 / 3 ) f(1/3) and f ( 2 / 3 ) f(2/3) gives f ( 1 / 3 ) = 20 / 27 f(1/3)=20/27 and f ( 2 / 3 ) = 55 / 27 f(2/3)=55/27

We found:

2 / 27 f ( 1 / 3 ) / 2 = f ( 1 / 3 ) 2/27-f(1/3)/2=f(-1/3)

So substituting, we get

2 / 27 10 / 27 = 8 / 27 = f ( 1 / 3 ) 2/27-10/27=-8/27=f(-1/3)

Plugging this into f ( 5 / 3 ) = 104 / 9 + 4 f ( 1 / 3 ) f(5/3)=104/9+4f(-1/3) , we get:

f ( 5 / 3 ) = 104 / 9 32 / 27 = 312 / 9 32 / 27 = 280 / 27 f(5/3)=104/9-32/27=312/9-32/27=280/27

So a = 280 a=280 , b = 27 b=27 , and a + b = 307 a+b=307

He submitted an edited version (5/3 instead of 5/6) This typo is not a problem. The solution is VERY inefficient, but seems correct.

Calvin Lin Staff - 7 years ago

Setting x = y = 1 3 x=y= \frac 13 in the equation, we get, f ( 2 3 ) = ( 1 + 1 3 1 + 1 3 ) f ( 1 3 ) + ( 1 + 1 3 1 + 1 3 ) f ( 1 3 ) + 2 ( 1 3 ) 3 + ( 1 3 ) 2 f(\frac 23) = (1+ \dfrac {\frac 13} {1 + \frac 13}) f(\frac 13) +(1+ \dfrac {\frac 13} {1 + \frac 13}) f(\frac 13) + 2 (\frac 13)^3 + (\frac 13)^2 f ( 2 3 ) = 5 2 f ( 1 3 ) + 5 27 \Rightarrow f(\frac 23) = \frac 52 f(\frac 13) + \frac 5 {27}

Again, setting x = 1 3 , y = 2 3 x = \frac 13, y = \frac 23 in the equation, f ( 1 ) = ( 1 + 1 3 1 + 2 3 ) f ( 2 3 ) + ( 1 + 2 3 1 + 1 3 ) f ( 1 3 ) + f(1) = (1+ \dfrac {\frac 13} {1 + \frac 23}) f(\frac 23) +(1+ \dfrac {\frac 23} {1 + \frac 13}) f(\frac 13) + 1 3 2 2 3 \frac 13^2 \cdot \frac 23 + 2 3 2 1 3 + 2 3 1 3 +\frac 23 ^2 \cdot \frac 13 + \frac 23 \cdot \frac 13

4 = 6 5 f ( 2 3 ) + 3 2 f ( 1 3 ) + 4 9 \Rightarrow 4 = \frac 65 f(\frac 23) + \frac 32 f(\frac 13) + \frac49

32 9 = 6 5 f ( 2 3 ) + 3 2 f ( 1 3 ) \Rightarrow \frac{32} 9 = \frac 65 f(\frac 23) + \frac 32 f(\frac 13)

Setting f ( 2 3 ) = 5 2 f ( 1 3 ) + 5 27 f(\frac 23) = \frac 52 f(\frac 13) + \frac 5 {27} ,

32 9 = 6 5 ( 5 2 f ( 1 3 ) + 5 27 ) + 3 2 f ( 1 3 ) \frac{32} 9 = \frac 65 ( \frac 52 f(\frac 13) + \frac 5 {27} ) + \frac 32 f(\frac 13) 32 9 = 9 2 f ( 1 3 ) + 2 9 f ( 1 3 ) = 2 9 30 9 = 20 27 \Rightarrow \frac {32}{9} = \frac 92 f(\frac 13) + \frac 29 \Rightarrow f(\frac 13) = \frac 29 \cdot \frac {30}{9} = \frac {20}{27}

So, f ( 2 3 ) = 5 2 20 27 + 5 27 = 55 27 f(\frac 23) = \frac 52 \frac {20}{27} + \frac 5 {27} = \frac{55}{27}

Finally, setting x = 1 , y = 2 3 x =1, y = \frac 23 in the equation,

f ( 5 3 ) = ( 1 + 2 3 1 + 1 ) f ( 1 ) + ( 1 + 1 1 + 2 3 ) f ( 2 3 ) + 2 ( 2 3 ) + ( 2 3 ) 2 f(\frac 53) = (1+ \dfrac {\frac 23} {1 +1}) f( 1) +(1+ \dfrac {1} {1 + \frac 23}) f(\frac 23) + 2 (\frac 23) + (\frac 23)^2

= 4 3 4 + 8 5 55 27 + 8 3 + 4 9 = \frac 43 \cdot 4 + \frac 85 \frac {55}{27} + \frac 83 +\frac 49

= 16 3 + 88 27 + 28 9 = 280 27 = \frac {16}3 + \frac {88}{27} + \frac {28}9 = \frac {280}{27}

So, a b = 280 27 \frac ab = \frac {280}{27} , and a + b = 280 + 27 = 307 a+b = 280+27 =307

Jesse Zhang
May 20, 2014

First we take y = 1 y=1 . The given equation yields, f ( x + 1 ) = ( 1 + 1 x + 1 ) f ( x ) + 4 + 2 x + x 2 + x + x . f(x+1)=\left(1+\frac{1}{x+1}\right)f(x) + 4+2x+x^2+x+x. That is, f ( x + 1 ) = ( x + 2 x + 1 ) f ( x ) + ( x + 2 ) 2 . f(x+1)=\left(\frac{x+2}{x+1}\right) f(x) + (x+2)^2. So, f ( x + 1 ) x + 2 = f ( x ) x + 1 + x + 2. \frac{f(x+1)}{x+2}=\frac{f(x)}{x+1}+x+2. Let g ( x ) = f ( x ) x + 1 . g(x)=\frac{f(x)}{x+1}. The above equation is equivalent to g ( x + 1 ) = g ( x ) + x + 2. g(x+1)=g(x)+x+2. Now, I claim that g ( x ) = x 2 + 3 x 2 g(x)=\frac{x^2+3x}{2} for x Z + x \in \mathbb{Z}^+ . We prove this by applying mathematical induction on x . x. Clearly, the equation holds for x = 1. x=1. Now assume that it holds for some positive integer x = n . x=n. Then, g ( n + 1 ) = n 2 + 3 n 2 + n + 2 = ( n + 1 ) 2 + 3 ( n + 1 ) 2 . g(n+1)=\frac{n^2+3n}{2}+n+2=\frac{(n+1)^2+3(n+1)}{2}. Thus, the equation for g g holds for all positive integers x . x.

In turn, this means that f ( x ) = x ( x + 1 ) ( x + 3 ) 2 . f(x)=\frac{x(x+1)(x+3)}{2}. It follows that f ( 5 3 ) = 280 27 f(\frac{5}{3})=\frac{280}{27} so our answer is 307. 307.

Note: The motivation for coming up with g g came from the resemblance of the recursive equation to that of triangle numbers.

The formula is only proven for integers, then used for a rational number

Calvin Lin Staff - 7 years ago
Calvin Lin Staff
May 13, 2014

Set g ( x ) = f ( x ) x + 1 g(x) = \frac {f(x)}{x+1} . The equation simplifies to g ( x + y ) = g ( x ) + g ( y ) + x y g(x+y) = g(x) + g(y) + xy , where g ( 1 ) = f ( 1 ) 2 = 2 g(1) = \frac{f(1)}{2} = 2 . Set h ( x ) = g ( x ) x 2 2 h(x) = g(x) - \frac {x^2}{2} . The equation simplifies to h ( x + y ) = h ( x ) + h ( y ) h(x+y) = h(x) + h(y) , where h ( 1 ) = g ( 1 ) 1 2 = 3 2 h(1) = g(1) - \frac{1}{2} = \frac {3}{2} . By repeated addition, since h ( n x ) = n h ( x ) h(nx)=nh(x) this functional equation must satisfy h ( p q ) = p h ( 1 q ) = p q h ( 1 ) h \left(\frac {p}{q} \right) = p h \left(\frac {1}{q}\right) = \frac {p}{q} h(1) . Thus, for all rational numbers r r , we must have g ( r ) = h ( r ) + r 2 2 = r 2 + 3 r 2 g(r) = h(r) + \frac {r^2}{2} = \frac {r^2 + 3r}{2} , which gives f ( r ) = ( r + 1 ) g ( r ) = r ( r + 1 ) ( r + 3 ) 2 f(r) = (r+1) g(r) = \frac { r(r+1)(r+3) } {2} . Thus f ( 5 3 ) = 5 3 8 3 14 3 1 2 = 280 27 f\left( \frac {5}{3}\right) = \frac {5}{3} \cdot \frac {8}{3} \cdot \frac {14}{3} \cdot \frac {1}{2} = \frac {280}{27} . Hence, a + b = 280 + 27 = 307 a+ b = 280 + 27 = 307 .

Surprisingly your solutions to your rated problems don't receive many upvotes. Or you prefer not to show them ?

Nishant Sharma - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...