Evaluating a summation

Calculus Level 3

If k = 1 101 ( 1 ) k 1 ( 100 k 1 ) k + 1 = a b \sum \limits_{k=1}^{101} \frac{(-1)^{k-1} \binom{100}{k-1}}{k+1} = \frac{a}{b} for some coprime positive integers a a and b b , find the last three digits of a + b a+b .


The answer is 303.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jatin Yadav
Dec 17, 2013

Let us try to generalise it:

Consider ( 1 x ) n = k = 0 n ( 1 ) k ( n k ) x k (1-x)^{n} = \displaystyle \sum_{k=0}^{n} (-1)^{k} {n \choose k} x^k

x ( 1 x ) n = k = 1 n + 1 ( 1 ) k 1 ( n k 1 ) x k \Rightarrow x(1-x)^n = \displaystyle \sum_{k = 1}^{n+1} (-1)^{k-1} {n \choose k-1} x^k

Integrate both sides in 0 to 1 to get :

k = 1 n + 1 ( 1 ) k 1 ( n k 1 ) k + 1 = 0 1 x ( 1 x ) n dx \displaystyle \sum_{k=1}^{n+1} \frac{(-1)^{k-1} {n \choose k-1}}{k+1} = \int_{0}^{1} x(1-x)^n \text{dx}

= 0 1 x n ( 1 x ) dx \displaystyle \int_{0}^{1} x^{n}(1-x) \text{dx} (Since, 0 a f ( x ) dx = 0 a f ( a x ) dx \displaystyle \int_{0}^{a} f(x) \text{dx} = \int_{0}^{a} f(a-x) \text{dx} )

= 0 1 x n dx 0 1 x n + 1 dx \displaystyle \int_{0}^{1} x^{n} \text{dx} - \int_{0}^{1} x^{n+1} \text{dx}

= 1 ( n + 1 ) ( n + 2 ) \boxed{\frac{1}{(n+1)(n+2)}}

Hence, if n = 100 n=100 , the value comes 1 10302 \frac{1}{10302} , implying a + b = 10303 a+b = 10303

Yes there is a way to do this without Calculus, the technique is very similar to the solution I posted for this problem: https://brilliant.org/community-problem/combinatorial-sum/?group=YW6Omei10liC&ref_id=92197

Xuming Liang - 7 years, 3 months ago

Exactly what I did!,but isn't there any method without the use of Calculus?

Kishan k - 7 years, 5 months ago

Log in to reply

I am not sure about that. This was my intended solution.

Sreejato Bhattacharya - 7 years, 5 months ago

Since 100 0 ( m o d 2 ) 100 \equiv 0 \pmod{2} , 100 ( k 1 ) 100-(k-1) and k 1 k-1 have the same parity, so ( 1 ) 100 ( k 1 ) = ( 1 ) k 1 (-1)^{100-(k-1)}= (-1)^{k-1} Let's ignore the k + 1 k+1 terms in the denominator for a while. Consider the numerator of a general term: ( 1 ) k 1 ( 100 k 1 ) = ( 1 ) 100 ( k 1 ) ( 100 k 1 ) (-1)^{k-1} \binom{100}{k-1}= (-1)^{100-(k-1)} \binom{100}{k-1} Notice that this is simply the coefficient of x k 1 x^{k-1} in ( x 1 ) 100 (x-1)^{100} , which is also equal to the coefficient of x k x^k in x ( x 1 ) 100 x(x-1)^{100} . We then conclude x ( x 1 ) 100 = k = 1 101 ( 1 ) k 1 ( 100 k 1 ) x k x(x-1)^{100}= \sum \limits_{k=1}^{101} (-1)^{k-1} \binom{100}{k-1} x^k Integrating both sides from 0 0 to 1 1 , 0 1 k = 1 101 ( 1 ) k 1 ( 100 k 1 ) x k d x = 0 1 x ( x 1 ) 100 d x \int \limits_{0}^{1} \sum \limits_{k=1}^{101} (-1)^{k-1} \binom{100}{k-1} x^k dx = \int \limits_{0}^{1} x(x-1)^{100} dx [ k = 1 101 ( 1 ) k 1 ( 100 k 1 ) k + 1 x k + 1 ] 0 1 = 0 1 x ( x 1 ) 100 d x \implies \left [ \sum \limits_{k=1}^{101} \frac{(-1)^{k-1} \binom{100}{k-1}}{k+1} x^{k+1} \right ]_{0}^{1}= \int \limits_{0}^{1} x(x-1)^{100} dx k = 1 101 ( 1 ) k 1 ( 100 k 1 ) k + 1 = 0 1 x ( x 1 ) 100 d x \implies \sum \limits_{k=1}^{101} \frac{(-1)^{k-1} \binom{100}{k-1}}{k+1}= \int \limits_{0}^{1} x(x-1)^{100} dx To compute the integral in the RHS, we make the substitution y = x 1 y=x-1 , so d y = d x dy=dx and 0 1 x ( x 1 ) 100 d x = 0 1 ( y + 1 ) y 100 d y = 0 1 y 101 + y 100 d y = [ y 102 102 + y 101 101 ] 0 1 = [ ( x 1 ) 102 102 + ( x 1 ) 101 101 ] 0 1 = 1 101 1 102 = 1 10302 \begin{array}{lcl} \int \limits_{0}^{1} x(x-1)^{100} dx & = & \int \limits_{0}^{1} (y+1)y^{100} dy \\ & = & \int \limits_{0}^{1} y^{101}+y^{100} dy \\ & = & \left [ \frac{y^{102}}{102} + \frac{y^{101}}{101} \right ] _{0}^{1} \\ &= & \left [ \frac{(x-1)^{102}}{102} + \frac{(x-1)^{101}}{101} \right ] _{0}^{1}\\ & = & \frac{1}{101}-\frac{1}{102} \\ &= & \frac{1}{10302} \end{array} Hence, a = 1 a=1 , b = 10302 b=10302 , and a + b = 10303 303 ( m o d 1000 ) a+b= 10303 \equiv \boxed{303} \pmod{1000} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...