Evaluating an Octic

Algebra Level 3

If x = 3 + 5 x = \sqrt{3} + \sqrt{5} , what is the value of x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) ? - x^2 (x^2-8)(x^2-14)(x^2-18)?


The answer is 480.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

14 solutions

Christopher Boo
May 20, 2014

Noticed that,

x 2 = 8 + 2 15 x^2=8+2\sqrt{15}

Let y y be x 2 8 = 2 15 x^2-8=2\sqrt{15} for the equation

( y 8 ) ( y ) ( y 6 ) ( y 10 ) -(y-8)(y)(y-6)(y-10)

Then, we expand and arrange the equation

y ( y 8 ) ( y 2 16 y + 60 ) -y(y-8)(y^2-16y+60)

Noticed that y 2 = 60 y^2=60 and substitute to the equation in a special way

= y ( y 8 ) ( y 2 16 y + y 2 ) =-y(y-8)(y^2-16y+y^2)

= y ( y 8 ) ( 2 y 2 16 y ) =-y(y-8)(2y^2-16y)

= 2 y 2 ( y 8 ) ( y + 8 ) =-2y^2(y-8)(y+8)

= 2 y 2 ( y 2 64 ) =-2y^2(y^2-64)

Hence, we substitute y 2 = 60 y^2=60 to the equation

= 2 ( 60 ) ( 60 64 ) =-2(60)(60-64)

= 480 =480

This is a very nice and clean solution. The text was revised slightly from the original submission, to eliminate a couple of misprints.

Most correct solutions consisted of calculating x^2 and then multiplying out, working with the square root of 15.

Calvin Lin Staff - 7 years ago

You have a misprint when you substitute -x^2 for -(y-8) instead of -(y+8)

Jan Figueroa - 4 years, 12 months ago
Charles Ngo
May 20, 2014

Given that x = 3 + 5 x= \sqrt{3} + \sqrt{5} , so x 2 = 8 + 2 × 15 x^2= 8+ 2\times \sqrt{15} We then substitute x 2 x^2 into the expression which then gives us:

( 8 + 2 × 15 ) ( 8 + 2 × 15 8 ) ( 8 + 2 × 15 14 ) ( 8 + 2 × 15 18 ) = [ ( 2 × 15 + 8 ) ( 2 × 15 ) ] [ ( 2 × 15 6 ) ( 2 × 15 10 ) ] = [ 4 ( 15 ) + 16 × 15 ] [ 4 ( 15 ) 32 × 15 + 60 ] = [ 4 ( 15 ) + 16 × 15 ] × ( 2 ) × [ 2 ( 15 ) 16 × 15 + 30 ] = ( 2 ) × [ ( 4 ) 15 + 16 × 15 ] [ 4 ( 15 ) 16 × 15 ] = ( 2 ) × [ ( 16 ) ( 15 ) ( 15 ) ( 16 ) ( 16 ) ( 15 ) ] = ( 2 ) × [ ( 16 ) ( 15 ) ( 15 16 ) ] = ( 2 ) × [ ( 16 ) × ( 15 ) × ( 1 ) ] = 480 -(8+ 2\times \sqrt{15})(8+ 2\times \sqrt{15}-8)(8+ 2\times \sqrt{15}-14)(8+ 2\times \sqrt{15}-18) \\ = -[(2\times \sqrt{15}+8)(2\times \sqrt{15})][(2\times \sqrt{15}-6)(2\times \sqrt{15}-10)] \\ = -[4(15)+16\times \sqrt{15}][4(15)-32\times \sqrt{15}+60] \\ = -[4(15)+16\times \sqrt{15}]\times (2) \times[2(15)-16\times \sqrt{15}+30] \\ = -(2)\times [(4)15+16\times \sqrt{15}][4(15)-16\times \sqrt{15}] \\ = -(2)\times [(16)(15)(15)-(16)(16)(15)] \\ = -(2)\times [(16)(15)(15-16)] = -(2) \times [(16)\times (15)\times (-1)]\\ = 480

All solutions performed this (pretty ugly) calculation.

Find another solution using the fact that x 4 16 x 2 + 4 = 0 x^4 - 16x^2 + 4 = 0 . Why does this equation hold?

Calvin Lin Staff - 7 years ago
Jerry Hermanto
May 20, 2014

x 2 = ( 3 + 5 ) 2 = ( 3 + 5 + 2 3 × 5 ) = 8 + 2 15 x^2 = (\sqrt{3} + \sqrt{5})^2 = (3+5+2\sqrt{3\times 5}) = 8+2\sqrt{15}
x 2 8 = 8 + 2 15 8 = 2 15 x^2 - 8 = 8+2\sqrt{15}-8 = 2\sqrt{15}
x 2 14 = 8 + 2 15 14 = 2 15 6 x^2 - 14 = 8+2\sqrt{15}-14 = 2\sqrt{15}-6
x 2 18 = 8 + 2 15 18 = 2 15 10 x^2 - 18 = 8+2\sqrt{15}-18 = 2\sqrt{15}-10
Multiply them all
x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) = ( 8 + 2 15 ) ( 2 15 ) ( 2 15 6 ) ( 2 15 10 ) = ( 16 15 + 2 2 × 15 ) ( 2 2 × 15 ( 10 + 6 ) × 2 15 + 6 × 10 ) x^2(x^2-8)(x^2-14)(x^2-18) = (8+2\sqrt{15})(2\sqrt{15})(2\sqrt{15}-6)(2\sqrt{15}-10) = (16\sqrt{15}+2^2\times{15})(2^2\times{15}-(10+6)\times{2\sqrt{15}}+6\times{10})
x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) = ( 16 15 + 60 ) ( 120 32 15 ) x^2(x^2-8)(x^2-14)(x^2-18) = (16\sqrt{15}+60)(120-32\sqrt{15})
x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) = 120 × 60 32 × 16 × 15 + ( 16 × 120 32 × 60 ) 15 = 7200 7680 + 0 = 480 x^2(x^2-8)(x^2-14)(x^2-18) = 120\times{60}-32\times{16}\times{15}+(16\times{120}-32\times{60})\sqrt{15} = 7200 - 7680 + 0 = -480
x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) = 480 -x^2(x^2-8)(x^2-14)(x^2-18) = 480
And we are done




Adam Silvernail
May 20, 2014

Let x 2 = 8 + 2 15 = y x^2 = 8 + 2\sqrt{15 } = y .

Evaluate: f ( y ) = y ( y 8 ) ( y 14 ) ( y 18 ) f(y)=-y(y-8)(y-14)(y-18) .

f ( y ) = ( 8 + 2 15 ) ( 2 15 ) ( 6 + 2 15 ) ( 10 + 2 15 ) f(y)=-(8 +2\sqrt{15 })(2\sqrt{15 })(-6+2\sqrt{15 })(-10+2\sqrt{15 }) .

= 2 ( 16 15 + 60 ) ( 16 15 60 ) =2(16\sqrt{15 }+60)(16\sqrt{15}-60) .

= 2 ( 3840 3600 ) = 480 =2(3840-3600) = 480 .

Synthetic division and the remainder polynomial theorem are also useful, but the process is not made any simpler.

Evelyn Kuan
May 20, 2014

( 3 + 5 ) 2 (√3 + √5)^2 = 3 + 5 + 2 15 = 3 + 5 + 2√15 = 8 + 2 15 = 8 + 2√15

x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) -x^2(x^2 - 8)(x^2 - 14)(x^2 -18) = ( 8 + 2 15 ) ( 8 + 2 15 8 ) ( 8 + 2 15 14 ) ( 8 + 2 15 18 ) = -(8+2√15)(8+2√15 - 8)(8+2√15 - 14)(8+2√15 - 18) = ( 8 + 2 15 ) ( 2 15 ) ( 2 15 6 ) ( 2 15 10 ) = -(8+2√15)(2√15)(2√15 - 6)(2√15 - 10) = ( 16 15 + 60 ) ( 60 20 15 12 15 + 60 ) = -(16√15 + 60)(60 - 20√15 - 12√15 + 60) = ( 16 15 + 60 ) ( 120 32 15 ) = -(16√15 + 60)(120 - 32√15) = ( 1920 15 7680 + 7200 1920 15 ) = -(1920√15 - 7680 + 7200 - 1920√15) = ( 480 ) = -(-480) = 480 = 480

Justin Yang
May 20, 2014

As x = 3 + 5 x = \sqrt{3} + \sqrt{5} , we know that x 2 = 3 + 2 3 5 + 5 = 8 + 2 15 x^2 = 3 + 2\sqrt{3 * 5} + 5 = 8 + 2\sqrt{15} . Let P = x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) P = -x^2(x^2 - 8)(x^2 - 14)(x^2 - 18) . Then P = ( 8 + 2 15 ) ( 2 15 ) ( 6 + 2 15 ) ( 10 + 2 15 ) . P = -(8 + 2\sqrt{15})(2\sqrt{15})(-6 + 2\sqrt{15})(-10 + 2\sqrt{15}). Then, P = ( 60 + 16 15 ) ( 120 32 15 ) = ( 60 120 32 16 15 ) = 480 P = -(60 + 16\sqrt{15})(120 - 32\sqrt{15}) = -(60 * 120 - 32 * 16 *15) = 480 .

We get x 2 = ( 3 + 5 ) 2 = 8 + 2 15 x^2 = (\sqrt 3 + \sqrt 5)^2 = 8+ 2 \sqrt {15}

So, ( x 2 8 ) ( x 2 18 ) = 2 15 ( 2 1 5 10 ) = (x^2-8)(x^2-18) = 2 \sqrt {15} (2 \sqrt 15 - 10) = 60 20 15 = 20 ( 3 15 ) 60 - 20 \sqrt{15} = 20(3 - \sqrt{15})

And, x 2 ( x 2 14 ) = ( 8 + 2 15 ) ( 2 15 6 ) = x^2 (x^2- 14) =(8+ 2 \sqrt {15})(2 \sqrt {15} - 6) = 60 48 + ( 16 12 ) 15 = 12 + 4 15 = 4 ( 3 + 15 ) 60-48 +(16-12)\sqrt {15} = 12 + 4 \sqrt {15} = 4 (3 +\sqrt {15})

So, x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) = 4 20 ( 3 + 15 ) ( 3 15 ) -x^2(x^2-8)(x^2-14)(x^2-18) = -4 \cdot 20 (3 +\sqrt {15}) (3 -\sqrt {15}) = 80 ( 9 15 ) = 80 6 = 480 = -80 \cdot (9-15) = -80 \cdot -6 = 480

Siddharth Gupta
May 20, 2014

Firstly, I calculated the value of x^2. Then I used it in the given equation and multiplied 2 brackets at a time using algebra, which finally got me the answer.

Because the question asked you to compute an equation in x^2, it would be easier to compute x^2 first, rather than dealing with three terms multiplication.

So, you get x^2 = 8 +2 \sqrt{15}

Then, by inputting this value into x^2, you just do the math slowly and carefully, and you will end up with an answer of 480

Wei Liang Gan
May 20, 2014

x 2 = 3 + 5 + 2 ( 3 ) ( 5 ) = 8 + 2 15 x^2 = 3+5+2(\sqrt{3})(\sqrt{5}) = 8 + 2\sqrt{15} x 2 ( x 2 14 ) = ( 2 15 + 8 ) ( 2 15 6 ) = 60 + 16 15 12 15 48 = 12 + 4 15 x^2(x^2-14) = (2\sqrt{15}+8)(2\sqrt{15}-6) = 60+16\sqrt{15}-12\sqrt{15}-48 = 12 + 4\sqrt{15} x 2 ( x 2 14 ) ( x 2 18 ) = ( 4 15 + 12 ) ( 2 15 10 ) = 120 + 24 15 40 15 120 = 16 15 x^2(x^2-14)(x^2-18) = (4\sqrt{15}+12)(2\sqrt{15}-10) = 120 + 24\sqrt{15} - 40\sqrt{15} - 120 = -16\sqrt{15} x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) = ( 2 15 ) ( 16 15 ) = 32 × 15 = 480 -x^2(x^2-8)(x^2-14)(x^2-18) = -(2\sqrt{15})(-16\sqrt{15}) = 32 \times 15 = 480

Shourya Pandey
May 20, 2014

x= \sqrt{3} + \sqrt{5}

x^2=[\sqrt{3} + \sqrt{5}]^2

x^2=[\sqrt{3}]^2+[\sqrt{5}]^2+2 \sqrt{3} \sqrt{5}

x^2=8+2(\sqrt{15}

So, On the substitution of these values in the equation, we get the required solution as 480.

Rina L
May 20, 2014

The value of x^2 is 8+2 \sqrt {15} and it become to 2 \sqrt {15} (-8- \sqrt {15} ) (2 \sqrt {15} -6)(2 \sqrt {15} -10). By do it one by one, you can find the value soon.

"By do it one by one, you can find the value soon." I agree, but more details should have been given.

Calvin Lin Staff - 7 years ago
Zi Song Yeoh
May 20, 2014

X 2 = 8 2 15 X^{2} = 8 - 2\sqrt{15} . So, the required product is just ( 2 15 + 8 ) ( 2 15 ) ( 2 15 6 ) ( 2 15 10 ) = ( 4 15 + 20 ) ( 60 12 15 ) = 480 -(2\sqrt{15} + 8)(2\sqrt{15})(2\sqrt{15} - 6)(2\sqrt{15} - 10) = (4\sqrt{15} + 20)(60 - 12\sqrt{15}) = 480 .

" X 2 = 8 2 15 X^{2} = 8 - 2\sqrt{15} " it should be +2\sqrt{15}. Got a bit lucky that the answer is an integer.

Calvin Lin Staff - 7 years ago
Calvin Lin Staff
May 13, 2014

We have that x 2 = 8 + 2 15 x^2 = 8 + 2 \sqrt{15} . Now, x 3 = ( 8 + 2 15 ) ( 3 + 15 ) = 18 3 + 14 5 x^3 = (8 + 2\sqrt{15})(\sqrt{3}+\sqrt{15}) = 18 \sqrt{3} + 14\sqrt{5} . So, we have x ( x 2 18 ) = x 3 18 x = 4 5 x(x^2-18) = x^3-18x = -4 \sqrt{5} and x ( x 2 14 ) = x 3 14 x = 4 3 x(x^2-14) = x^3-14x = 4\sqrt{3} . Hence x 2 ( x 2 8 ) ( x 2 14 ) ( x 2 18 ) = ( x 2 8 ) ( x 3 14 x ) ( x 3 18 x ) = ( 2 15 ) × ( 4 3 ) × ( 4 5 ) = 480 \begin{aligned} -x^2(x^2-8)(x^2-14)(x^2-18) &= -(x^2-8)(x^3-14x)(x^3-18x) & \\ &= - (2\sqrt{15}) \times (4 \sqrt{3}) \times (-4 \sqrt{5}) & \\ & = 480 & \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...