It's a form of a something similar

Calculus Level 3

The limit

lim x 3 [ 1 ( 9 x 2 ) 2 ( 9 + x 2 3 x 2 sin 3 π 2 sin π x 2 ) ] \lim_{x \to 3} \left [ \frac{1}{(9-x^2)^{2}} \left( \frac{9+x^2}{3x} - 2\sin \frac{3π}{2} \sin \frac{πx}{2} \right) \right ]

can be expressed as a + b π c d a \displaystyle \frac{a + b \pi^ c}{d^a} for positive integers a , b , c , a,b,c, and d . d.

What is the value of a + b + c + d ? a+b+c+d?


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matt O
Dec 25, 2015

When the limit is 0 0 \frac{0}{0} , we can use L'Hopital's Rule because the numerators and denominators of f(x) in isolation are continuous at x = 3. lim x 3 [ 1 ( 9 x 2 ) 2 ( 9 + x 2 3 x 2 s i n 3 π 2 s i n π x 2 ) ] = 0 0 lim x 3 [ 3 x 2 + 1 3 + π c o s π x 2 4 x 3 36 x ] = 0 0 lim x 3 [ 6 x 3 π 2 2 s i n π x 2 12 x 2 36 ] = 6 27 + π 2 2 72 = 4 + 9 π 2 18 1 72 = 4 + 9 π 2 3 6 2 = 4 + 9 π 2 6 4 = a + b π c d a ( a , b , c , d ) = ( 4 , 9 , 2 , 6 ) a + b + c + d = 4 + 9 + 2 + 6 = 21 \displaystyle\lim_{x \to 3} \bigg[ \frac{1}{(9 - x^2)^2} \bigg( \frac{9+x^2}{3x}- 2sin\frac{3\pi}{2}sin\frac{\pi x}{2} \bigg) \bigg] = \frac{0}{0} \\ \displaystyle\lim_{x \to 3} \bigg[ \frac{\frac{-3}{x^2} + \frac{1}{3} + \pi cos\frac{\pi x}{2}}{4x^3 - 36x} \bigg] = \frac{0}{0} \\ \displaystyle\lim_{x \to 3} \bigg[ \frac{\frac{6}{x^3} - \frac{\pi^{2}}{2} sin\frac{\pi x}{2}}{12x^2 - 36} \bigg] = \frac{\frac{6}{27} + \frac{\pi^{2}}{2}}{72} = \frac{4 + 9\pi^2}{18} \cdot \frac{1}{72} = \frac{4 + 9\pi^2}{36^2} = \frac{4 + 9\pi^2}{6^4} = \frac{a + b\pi^c}{d^a} \\ (a, b, c, d) = (4, 9, 2, 6) \Rightarrow a+b+c+d=4+9+2+6=21

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...